Join IIUG
 for   
 

Informix News
18 Nov 13 - ZDNet - Top 20 mobile skills in demand... Read
09 Sep 13 - telecompaper - Shaspa and Tatung have shown a new smart home platform at Ifa in Berlin. Powered by the IBM Informix software... Read
06 Sep 13 - IBM data magazine - Mission Accomplished - Miami, Florida will be the backdrop for the 2014 IIUG Informix Conference... Read
01 Feb 13 - IBM Data Magazine - Are your database backups safe? Lester Knutsen (IBM Champion) writes about database back up safety using "archecker"... Read
14 Nov 12 - IBM - IBM's Big Data For Smart Grid Goes Live In Texas... Read
3 Oct 12 - The Financial - IBM and TransWorks Collaborate to Help Louisiana-Pacific Corporation Achieve Supply Chain Efficiency... Read
28 Aug 12 - techCLOUD9 - Splunk kicks up a SaaS Storm... Read
10 Aug 12 - businessCLOUD9 - Is this the other half of Cloud monitoring?... Read
3 Aug 12 - IBM data management - Supercharging the data warehouse while keeping costs down IBM Informix Warehouse Accelerator (IWA) delivers superior performance for in-memory analytics processing... Read
2 Aug 12 - channelbiz - Oninit Group launches Pay Per Pulse cloud-based service... Read
28 May 12 - Bloor - David Norfolk on the recent Informix benchmark "pretty impressive results"... Read
23 May 12 - DBTA - Informix Genero: A Way to Modernize Informix 4GL Applications... Read
9 Apr 12 - Mastering Data Management - Upping the Informix Ante: Advanced Data Tools... Read
22 Mar 12 - developerWorks - Optimizing Informix database access... Read
14 Mar 12 - BernieSpang.com - International Informix User Group set to meet in San Diego... Read
1 Mar 12 - IBM Data Management - IIUG Heads West for 2012 - Get ready for sun and sand in San Diego... Read
1 Mar 12 - IBM Data Management - Running Informix on Solid-State Drives.Speed Up Database Access... Read
26 Feb 12 - BernieSpan.com - Better results, lower cost for a broad set of new IBM clients and partners... Read
24 Feb 12 - developerWorks - Informix Warehouse Accelerator: Continuous Acceleration during Data Refresh... Read
6 Feb 12 - PRLOG - Informix port delivers unlimited database scalability for popular SaaS application ... Read
2 Feb 12 - developerWorks - Loading data with the IBM Informix TimeSeries Plug-in for Data Studio... Read
1 Feb 12 - developerWorks - 100 Tech Tips, #47: Log-in to Fix Central... Read
13 Jan 12 - MC Press online - Informix Dynamic Server Entices New Users with Free Production Edition ... Read
11 Jan 12 - Computerworld - Ecologic Analytics and Landis+Gyr -- Suitors Decide to Tie the Knot... Read
9 Jan 12 - planetIDS.com - DNS impact on Informix / Impacto do DNS no Informix... Read
8 Sep 11 - TMCnet.com - IBM Offers Database Solution to Enable Smart Meter Data Capture... Read
1 Aug 11 - IBM Data Management Magazine - IIUG user view: Happy 10th anniversary to IBM and Informix... Read
8 Jul 11 - Database Trends and Applications - Managing Time Series Data with Informix... Read
31 May 11 - Smart Grid - The meter data management pitfall utilities are overlooking... Read
27 May 11 - IBM Data Management Magazine - IIUG user view: Big data, big time ( Series data, warehouse acceleration, and 4GLs )... Read
16 May 11 - Business Wire - HiT Software Announces DBMoto for Enterprise Integration, Adds Informix. Log-based Change Data Capture... Read
21 Mar 11 - Yahoo! Finance - IBM and Cable&Wireless Worldwide Announce UK Smart Energy Cloud... Read
14 Mar 11 - MarketWatch - Fuzzy Logix and IBM Unveil In-Database Analytics for IBM Informix... Read
11 Mar 11 - InvestorPlace - It's Time to Give IBM Props: How many tech stocks are up 53% since the dot-com boom?... Read
9 Mar 11 - DBTA - Database Administration and the Goal of Diminishing Downtime... Read
2 Feb 11 - DBTAs - Informix 11.7 Flexible Grid Provides a Different Way of Looking at Database Servers... Read
27 Jan 11 - exactsolutions - Exact to Add Informix Support to Database Replay, SQL Monitoring Solutions... Read
25 Jan 11 - PR Newswire - Bank of China in the UK Works With IBM to Become a Smarter, Greener Bank... Read
12 Oct 10 - Database Trends and Applications - Informix 11.7: The Beginning of the Next Decade of IBM Informix... Read
20 Sep 10 - planetIDS.com - ITG analyst paper: Cost/Benefit case for IBM Informix as compared to Microsoft SQL Server... Read
20 Jul 10 - IBM Announcements - IBM Informix Choice Edition V11.50 helps deploy low-cost scalable and reliable solutions for Apple Macintosh and Microsoft Windows... Read
20 Jul 10 - IBM Announcements - Software withdrawal: Elite Support for Informix Ultimate-C Edition... Read
24 May 10 - eWeek Europe - IBM Supplies Database Tech For EU Smart Grid... Read
23 May 10 - SiliconIndia - IBM's smart metering system allows wise use of energy... Read
21 May 10 - CNET - IBM to help people monitor energy use... Read
20 May 10 - ebiz - IBM Teams With Hildebrand To Bring Smart Metering To Homes Across Britain... Read
19 May 10 - The New Blog Times - Misurare il consumo energetico: DEHEMS è pronto... Read
19 May 10 - ZDNet - IBM software in your home? Pact enables five-city smart meter pilot in Europe... Read
17 March 10 - ZDNet (blog) David Morgenstern - TCO: New research finds Macs in the enterprise easier, cheaper to manage than... Read
17 March 2010 - Virtualization Review - ...key components of Big Blue's platform to the commercial cloud such as its WebSphere suite of application ser vers and its DB2 and Informix databases... Read
10 February 2010 - The Wall Street Journal - International Business Machines is expanding an initiative to win over students and professors on its products. How do they lure the college crowd?... Read


End of Support Dates

IIUG on Facebook IIUG on Twitter

[ View Thread ] [ Post Response ] [ Return to Index ] [ Read Prev Msg ] [ Read Next Msg ]

IDS Forum

Re: Fw: Query troubles

Posted By: Art Kagel
Date: Tuesday, 13 March 2012, at 1:09 p.m.

In Response To: Re: Fw: Query troubles (Peter_Logan@spartanstores.com)

Odd indeed. I'd need significant hands-on there to figure this one out,
and the solution may be a rewrite of the query.

Art

Art S. Kagel
Advanced DataTools (www.advancedatatools.com)
Blog: http://informix-myview.blogspot.com/

Disclaimer: Please keep in mind that my own opinions are my own opinions
and do not reflect on my employer, Advanced DataTools, the IIUG, nor any
other organization with which I am associated either explicitly,
implicitly, or by inference. Neither do those opinions reflect those of
other individuals affiliated with any entity with which I am affiliated nor
those of the entities themselves.

On Tue, Mar 13, 2012 at 12:56 PM, Peter_Logan@spartanstores.com <
Peter_Logan@spartanstores.com> wrote:

> The really strange thing is that once I add any sort of distributions on
> this table, the query goes out to lunch. The week that generally runs in
> 2 or 3 mins goes to about 37 mins....
>
> Peter Logan
> Senior Database Administrator
> Phone: 616/878-8309
>
> From: "Art Kagel" <art.kagel@gmail.com>
> To: ids@iiug.org
> Date: 03/13/2012 11:03 AM
> Subject: Re: Fw: Query troubles [26510]
> Sent by: ids-bounces@iiug.org
>
> OK, I've taken the time to at least scan the SET EXPLAIN output below.
> Most of the row estimates for over half of the tables in the query are WAY
>
> OFF including the efin_wk_line_cls table. The estimates for both versions
> of the query guess that the engine will return 66.6million rows when
> actually only about 755thousand rows are ultimately returned from that
> table. The estimates on the joins are similarly off which affects the
> order of processing the tables. I'm back to saying it sounds like the
> stats are stale or insufficiently detailed (MEDIUM sampling is too small
> or
> HIGH should be used instead or the resolution is too low - ie not enough
> bins).
>
> Art
>
> Art S. Kagel
> Advanced DataTools (www.advancedatatools.com)
> Blog: http://informix-myview.blogspot.com/
>
> Disclaimer: Please keep in mind that my own opinions are my own opinions
> and do not reflect on my employer, Advanced DataTools, the IIUG, nor any
> other organization with which I am associated either explicitly,
> implicitly, or by inference. Neither do those opinions reflect those of
> other individuals affiliated with any entity with which I am affiliated
> nor
> those of the entities themselves.
>
> On Tue, Mar 13, 2012 at 10:50 AM, Art Kagel <art.kagel@gmail.com> wrote:
>
> > What level of stats (MEDIUM, HIGH) do you have on the fragmentation
> column
> > (week#?) and at what resolution/confidence/sampling? How many total rows
>
> > in the table? According to sysdistrib when were stats last calculated on
>
> > the table?
> >
> > I would initially suggest forcing stats updates, but if last year
> behaves
> > the same way for the weeks in the fragment after the first that would
> point
> > to something other than the engine ignoring the update stats commands.
> Is
> > it just the fragment with weeks 37-40 each year or the 2nd-4th weeks in
> > many fragments? I'm assuming fiscal years and retail weeks here. What
> > calendar dates do weeks 37-4 correspond to this year? Could there be a
> > natural data skew in one of the four weeks in this fragment that is
> > confusing the optimizer?
> >
> > Art
> >
> > Art S. Kagel
> > Advanced DataTools (www.advancedatatools.com)
> > Blog: http://informix-myview.blogspot.com/
> >
> > Disclaimer: Please keep in mind that my own opinions are my own opinions
>
> > and do not reflect on my employer, Advanced DataTools, the IIUG, nor any
>
> > other organization with which I am associated either explicitly,
> > implicitly, or by inference. Neither do those opinions reflect those of
> > other individuals affiliated with any entity with which I am affiliated
> nor
> > those of the entities themselves.
> >
> >
> >
> >
> > On Tue, Mar 13, 2012 at 10:37 AM, Peter_Logan@spartanstores.com <
> > Peter_Logan@spartanstores.com> wrote:
> >
> >> IDS 11.70.FC3XC
> >> Aix 6.1
> >>
> >> Before I contact IBM to see if I'm running into some defect...thought
> I'd
> >> send this to the list. Couple of additional items, efin_wk_line_cls is
> a
> >> fragmented table. It has 40 fragments. Each fragment contains 4 weeks
> of
> >> data. Statistics haven't been updated with the new fragment level
> >> stuff... Weeks 37 - 40 are in the same fragment, and week 37 works as
> >> expected, and everything after week 37 is slow. If we do a different
> >> year, IE. last year the same behavior occurs...I am totally at a loss
> with
> >> this...
> >>
> >> Thanks ...
> >>
> >> Peter Logan
> >> Senior Database Administrator
> >> Phone: 616/878-8309
> >> ----- Forwarded by Peter Logan/Corporate/Spartan on 03/13/2012 10:32 AM
>
> >> -----
> >>
> >> From: Bruce Farwell/OTI/Spartan
> >> To: Peter Logan/Corporate/Spartan@SpartanStore
> >> Cc: Steve Baar/Corporate/Spartan@SpartanStore
> >> Date: 03/12/2012 11:02 AM
> >> Subject: Query troubles
> >>
> >> Peter, I have a SQL query that is causing me problems in EIS. The
> >> calculation is for year to date sales, which is done with a
> transformation
> >> table. I give a week_id to the query and it uses the transformation
> table
> >> (week_to_year_lkp) to determine sales for all the weeks from the start
> of
> >> the year.
> >>
> >> The problem is that from weeks 1 to 37 the query runs in about 4
> minutes,
> >> but from week 38 on the query plan changes and it takes approx 20
> minutes.
> >> This is slowing down report execution for the users.
> >>
> >> Can you take a look and see what can be done to avoid this problem?
> >>
> >> -Bruce
> >>
> >> The two query explains are below:
> >>
> >> Query 1 is week 37 and it run in about 4 minutes:
> >>
> >> QUERY: (OPTIMIZATION TIMESTAMP: 03-12-2012 09:47:32)
> >> ------
> >> select a18.mdse_grp_key mdse_grp_key,
> >>
> >> a12.fiscal_week_id fiscal_week_id,
> >>
> >> a13.catgy_manager_key catgy_manager_key,
> >>
> >> (sum(a11.total_sales_amt) * 0.001) WJXBFS1,
> >>
> >> (sum(a11.ext_profit_amt) * 0.001) WJXBFS2,
> >>
> >> sum(a11.total_sales_amt) WJXBFS3,
> >>
> >> sum(a11.ext_profit_amt) WJXBFS4
> >> from efin_wk_line_cls a11,
> >>
> >> week_to_year_lkp a12,
> >>
> >> mdse_class_manager a13,
> >>
> >> line a14,
> >>
> >> chain a15,
> >>
> >> channel a16,
> >>
> >> mdse_class a17,
> >>
> >> mdse_category a18,
> >>
> >> mdse_group a19,
> >>
> >> department a110,
> >>
> >> business_dept a111
> >> where a11.fiscal_week_id = a12.fiscal_wty_id and
> >>
> >> a11.mdse_class_key = a13.mdse_class_key and
> >>
> >> a11.sales_line_id = a14.sales_line_id and
> >>
> >> a14.sales_chain_id = a15.sales_chain_id and
> >>
> >> a15.sales_channel_id = a16.sales_channel_id and
> >>
> >> a11.mdse_class_key = a17.mdse_class_key and
> >>
> >> a17.mdse_catgy_key = a18.mdse_catgy_key and
> >>
> >> a18.mdse_grp_key = a19.mdse_grp_key and
> >>
> >> a19.dept_key = a110.dept_key and
> >>
> >> a110.bus_dept_key = a111.bus_dept_key
> >>
> >> and (a16.enterprise_id in (18)
> >>
> >> and a13.catgy_manager_key in (70)
> >>
> >> and a110.dept_grp_key not in (525, 9)
> >>
> >> and a14.format_type_id in ('SUPERMKT ')
> >>
> >> and a12.fiscal_week_id in (201237)
> >>
> >> and a111.dept_grp_type_key in (1))
> >> group by a18.mdse_grp_key,
> >>
> >> a12.fiscal_week_id,
> >>
> >> a13.catgy_manager_key
> >> into temp ZZT6JQNPTNRMD003 with no log
> >>
> >> Estimated Cost: 220818
> >> Estimated # of Rows Returned: 1499
> >> Maximum Threads: 25
> >> Temporary Files Required For: Group By
> >>
> >> 1) whmgr.a16: INDEX PATH
> >>
> >> (1) Index Name: whmgr.channel_i2
> >>
> >> Index Keys: enterprise_id (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a16.enterprise_id = 18
> >>
> >> 2) whmgr.a15: INDEX PATH
> >>
> >> (1) Index Name: whmgr.chain_i2
> >>
> >> Index Keys: sales_channel_id (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a15.sales_channel_id =
> >> whmgr.a16.sales_channel_id
> >> NESTED LOOP JOIN
> >>
> >> 3) whmgr.a14: INDEX PATH
> >>
> >> Filters: whmgr.a14.format_type_id = 'SUPERMKT '
> >>
> >> (1) Index Name: whmgr.line_i2
> >>
> >> Index Keys: sales_chain_id (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a14.sales_chain_id =
> >> whmgr.a15.sales_chain_id
> >> NESTED LOOP JOIN
> >>
> >> 4) whmgr.a111: SEQUENTIAL SCAN
> >>
> >> Filters: whmgr.a111.dept_grp_type_key = 1
> >> NESTED LOOP JOIN
> >>
> >> 5) whmgr.a12: SEQUENTIAL SCAN
> >>
> >> Filters: whmgr.a12.fiscal_week_id = 201237
> >> NESTED LOOP JOIN
> >>
> >> 6) whmgr.a110: SEQUENTIAL SCAN
> >>
> >> Filters:
> >>
> >> Table Scan Filters: whmgr.a110.dept_grp_key NOT IN (525 , 9 )
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a110.bus_dept_key =
> >> whmgr.a111.bus_dept_key
> >>
> >> 7) whmgr.a19: SEQUENTIAL SCAN
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a19.dept_key = whmgr.a110.dept_key
> >>
> >> 8) whmgr.a18: SEQUENTIAL SCAN
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a18.mdse_grp_key = whmgr.a19.mdse_grp_key
> >>
> >> 9) whmgr.a17: SEQUENTIAL SCAN
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a17.mdse_catgy_key =
> >> whmgr.a18.mdse_catgy_key
> >>
> >> 10) whmgr.a13: INDEX PATH
> >>
> >> (1) Index Name: whmgr.mdse_class_mgr_i1
> >>
> >> Index Keys: catgy_manager_key (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a13.catgy_manager_key = 70
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a13.mdse_class_key =
> >> whmgr.a17.mdse_class_key
> >>
> >> 11) whmgr.a11: INDEX PATH
> >>
> >> (1) Index Name: whmgr.efin_wk_ln_cls_i
> >>
> >> Index Keys: fiscal_week_id sales_line_id mdse_class_key
> >> discount_type_cd (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: ((whmgr.a11.mdse_class_key =
> >> whmgr.a13.mdse_class_key AND whmgr.a11.fiscal_week_id =
> >> whmgr.a12.fiscal_wty_id ) AND whmgr.a11.sales_line_id =
> >> whmgr.a14.sales_line_id )
> >> NESTED LOOP JOIN
> >>
> >> Query statistics:
> >> -----------------
> >>
> >> Table map :
> >> ----------------------------
> >> Internal name Table name
> >> ----------------------------
> >> t1 a16
> >> t2 a15
> >> t3 a14
> >> t4 a111
> >> t5 a12
> >> t6 a110
> >> t7 a19
> >> t8 a18
> >> t9 a17
> >> t10 a13
> >> t11 a11
> >> t12 zzt6jqnptnrmd003
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t1 7 7 7 00:00.00 2
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t2 9 25 9 00:00.00 0
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 9 6 00:00.01 5
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t3 137 23 173 00:00.00 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 137 6 00:00.02 15
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t4 1507 11 3014 00:00.00 3
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 1507 63 00:00.01 30
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t5 55759 28 18849556 00:04.88 426
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 55759 1771 00:04.90 26987
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t6 25 25 27 00:00.00 3
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 70966 2013 25 55759 0 00:01.16
> >> 27319
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t7 722 722 722 00:00.00 34
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 2336809 53840 722 70966 0 00:01.92
> >> 27854
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t8 3807 3807 3807 00:00.00 173
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 13209814 283888 3807 2336809 0 00:10.94
> >> 38624
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t9 8102 8102 8102 00:00.00 410
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 24848238 604167 8102 13209814 0 00:37.15
> >> 92809
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t10 270 270 270 00:00.01 13
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 1358492 20092 270 24848238 0 01:11.38
> >> 204318
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t11 755416 66768516 755416 06:00.20 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 755416 1347 08:06.32 218612
> >>
> >> type rows_prod est_rows rows_cons time est_cost
> >> ------------------------------------------------------------
> >> group 19 1499 755416 04:03.93 2207
> >>
> >> type rows_prod est_rows rows_cons time
> >> -------------------------------------------------
> >> group 19 1499 19 04:03.93
> >>
> >> type table rows_ins time
> >> -----------------------------------
> >> insert t12 19 16:15.75
> >>
> >> Query 2 is week 38 and it ran in approx 40 minutes:
> >>
> >> QUERY: (OPTIMIZATION TIMESTAMP: 03-12-2012 09:55:55)
> >> ------
> >> select a18.mdse_grp_key mdse_grp_key,
> >>
> >> a12.fiscal_week_id fiscal_week_id,
> >>
> >> a13.catgy_manager_key catgy_manager_key,
> >>
> >> (sum(a11.total_sales_amt) * 0.001) WJXBFS1,
> >>
> >> (sum(a11.ext_profit_amt) * 0.001) WJXBFS2,
> >>
> >> sum(a11.total_sales_amt) WJXBFS3,
> >>
> >> sum(a11.ext_profit_amt) WJXBFS4
> >> from efin_wk_line_cls a11,
> >>
> >> week_to_year_lkp a12,
> >>
> >> mdse_class_manager a13,
> >>
> >> line a14,
> >>
> >> chain a15,
> >>
> >> channel a16,
> >>
> >> mdse_class a17,
> >>
> >> mdse_category a18,
> >>
> >> mdse_group a19,
> >>
> >> department a110,
> >>
> >> business_dept a111
> >> where a11.fiscal_week_id = a12.fiscal_wty_id and
> >>
> >> a11.mdse_class_key = a13.mdse_class_key and
> >>
> >> a11.sales_line_id = a14.sales_line_id and
> >>
> >> a14.sales_chain_id = a15.sales_chain_id and
> >>
> >> a15.sales_channel_id = a16.sales_channel_id and
> >>
> >> a11.mdse_class_key = a17.mdse_class_key and
> >>
> >> a17.mdse_catgy_key = a18.mdse_catgy_key and
> >>
> >> a18.mdse_grp_key = a19.mdse_grp_key and
> >>
> >> a19.dept_key = a110.dept_key and
> >>
> >> a110.bus_dept_key = a111.bus_dept_key
> >>
> >> and (a16.enterprise_id in (18)
> >>
> >> and a13.catgy_manager_key in (70)
> >>
> >> and a110.dept_grp_key not in (525, 9)
> >>
> >> and a14.format_type_id in ('SUPERMKT ')
> >>
> >> and a12.fiscal_week_id in (201238)
> >>
> >> and a111.dept_grp_type_key in (1))
> >> group by a18.mdse_grp_key,
> >>
> >> a12.fiscal_week_id,
> >>
> >> a13.catgy_manager_key
> >> into temp ZZT6JQNPTNRMD003 with no log
> >>
> >> Estimated Cost: 297043
> >> Estimated # of Rows Returned: 925
> >> Maximum Threads: 26
> >> Temporary Files Required For: Group By
> >>
> >> 1) whmgr.a13: INDEX PATH
> >>
> >> (1) Index Name: whmgr.mdse_class_mgr_i1
> >>
> >> Index Keys: catgy_manager_key (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a13.catgy_manager_key = 70
> >>
> >> 2) whmgr.a17: INDEX PATH
> >>
> >> (1) Index Name: whmgr. 314_609
> >>
> >> Index Keys: mdse_class_key (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a13.mdse_class_key =
> >> whmgr.a17.mdse_class_key
> >> NESTED LOOP JOIN
> >>
> >> 3) whmgr.a18: INDEX PATH
> >>
> >> (1) Index Name: whmgr. 292_608
> >>
> >> Index Keys: mdse_catgy_key (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a17.mdse_catgy_key =
> >> whmgr.a18.mdse_catgy_key
> >> NESTED LOOP JOIN
> >>
> >> 4) whmgr.a19: INDEX PATH
> >>
> >> (1) Index Name: whmgr. 291_611
> >>
> >> Index Keys: mdse_grp_key (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a18.mdse_grp_key =
> >> whmgr.a19.mdse_grp_key
> >> NESTED LOOP JOIN
> >>
> >> 5) whmgr.a110: INDEX PATH
> >>
> >> Filters: whmgr.a110.dept_grp_key NOT IN (525 , 9 )
> >>
> >> (1) Index Name: whmgr. 300_606
> >>
> >> Index Keys: dept_key (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a19.dept_key = whmgr.a110.dept_key
> >> NESTED LOOP JOIN
> >>
> >> 6) whmgr.a111: SEQUENTIAL SCAN
> >>
> >> Filters:
> >>
> >> Table Scan Filters: whmgr.a111.dept_grp_type_key = 1
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a110.bus_dept_key =
> >> whmgr.a111.bus_dept_key
> >>
> >> 7) whmgr.a16: INDEX PATH
> >>
> >> (1) Index Name: whmgr.channel_i2
> >>
> >> Index Keys: enterprise_id (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a16.enterprise_id = 18
> >> NESTED LOOP JOIN
> >>
> >> 8) whmgr.a15: INDEX PATH
> >>
> >> (1) Index Name: whmgr.chain_i2
> >>
> >> Index Keys: sales_channel_id (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: whmgr.a15.sales_channel_id =
> >> whmgr.a16.sales_channel_id
> >> NESTED LOOP JOIN
> >>
> >> 9) whmgr.a14: SEQUENTIAL SCAN
> >>
> >> Filters:
> >>
> >> Table Scan Filters: whmgr.a14.format_type_id = 'SUPERMKT '
> >>
> >> DYNAMIC HASH JOIN
> >>
> >> Dynamic Hash Filters: whmgr.a14.sales_chain_id =
> >> whmgr.a15.sales_chain_id
> >>
> >> 10) whmgr.a12: SEQUENTIAL SCAN
> >>
> >> Filters: whmgr.a12.fiscal_week_id = 201238
> >> NESTED LOOP JOIN
> >>
> >> 11) whmgr.a11: INDEX PATH
> >>
> >> (1) Index Name: whmgr.efin_wk_ln_cls_i
> >>
> >> Index Keys: fiscal_week_id sales_line_id mdse_class_key
> >> discount_type_cd (Parallel, fragments: ALL)
> >>
> >> Lower Index Filter: ((whmgr.a11.mdse_class_key =
> >> whmgr.a13.mdse_class_key AND whmgr.a11.fiscal_week_id =
> >> whmgr.a12.fiscal_wty_id ) AND whmgr.a11.sales_line_id =
> >> whmgr.a14.sales_line_id )
> >> NESTED LOOP JOIN
> >>
> >> Query statistics:
> >> -----------------
> >>
> >> Table map :
> >> ----------------------------
> >> Internal name Table name
> >> ----------------------------
> >> t1 a13
> >> t2 a17
> >> t3 a18
> >> t4 a19
> >> t5 a110
> >> t6 a111
> >> t7 a16
> >> t8 a15
> >> t9 a14
> >> t10 a12
> >> t11 a11
> >> t12 zzt6jqnptnrmd003
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t1 270 270 270 00:00.01 13
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t2 268 8102 268 00:00.17 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 268 270 00:00.21 374
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t3 268 3807 268 00:00.00 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 268 270 00:00.21 583
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t4 268 722 268 00:00.02 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 268 270 00:00.22 736
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t5 268 25 268 00:00.00 0
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 268 251 00:00.17 785
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t6 11 11 22 00:00.00 3
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 268 126 11 268 0 00:00.07 835
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t7 1876 7 1876 00:00.03 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 1876 878 00:00.17 987
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t8 2412 25 2412 00:00.04 0
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 2412 669 00:00.22 1132
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t9 137 23 230 00:00.00 14
> >>
> >> type rows_prod est_rows rows_bld rows_prb novrflo time est_cost
> >>
> >>
> >>
>
> ------------------------------------------------------------------------------
>
> >> hjoin 36716 645 137 2412 0 00:00.15 1274
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t10 1395208 39 459243728 01:56.18 426
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 1395208 24945 01:56.51 273898
> >>
> >> type table rows_prod est_rows rows_scan time est_cost
> >> -------------------------------------------------------------------
> >> scan t11 775830 66768516 775830 58:43.74 1
> >>
> >> type rows_prod est_rows time est_cost
> >> -------------------------------------------------
> >> nljoin 775830 1861 65:49.52 293661
> >>
> >> type rows_prod est_rows rows_cons time est_cost
> >> ------------------------------------------------------------
> >> group 19 925 775830 32:56.45 3383
> >>
> >> type rows_prod est_rows rows_cons time
> >> -------------------------------------------------
> >> group 19 925 19 32:56.45
> >>
> >> type table rows_ins time
> >> -----------------------------------
> >> insert t12 19 131:45.81
> >>
> >>
> >>
> >>
>
>
> *******************************************************************************
>
> >> Forum Note: Use "Reply" to post a response in the discussion forum.
> >>
> >>
> >
>
> --e89a8ff2437da3caae04bb21266c
>
>
>
> *******************************************************************************
>
> Forum Note: Use "Reply" to post a response in the discussion forum.
>
>
>
> *******************************************************************************
> Forum Note: Use "Reply" to post a response in the discussion forum.
>
>

--047d7b15a12fef0c9e04bb22ecb8

Messages In This Thread

[ View Thread ] [ Post Response ] [ Return to Index ] [ Read Prev Msg ] [ Read Next Msg ]

IDS Forum is maintained by Administrator with WebBBS 5.12.