
INFORMIX-4GL
CGI Library

Version: 4.16 UC1 and 6.04 UC1
August 1996
Part No. 000-8952

®

ii INFORMIX

Published by: Informix Software, Inc.
4100 Bohannon Drive
Menlo Park, CA 94025

Copyright 1981-1996 by Informix Software, Inc.; provided, portions may be copyright in third parties, as set
forth in documentation. All rights reserved.

The following are worldwide trademarks of Informix Software, Inc., or its subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

INFORMIX; NewEra; ViewPoint; C-ISAM; INFORMIX-OnLine Dynamic Server;
SuperView (SuperView technology Patent Pending)

The following are worldwide trademarks of the indicated owners or their subsidiaries, registered in the
United States of America as indicated by “,” and in numerous other countries worldwide:

Adobe Systems Incorporated: PostScript

All other marks or symbols are registered trademarks or trademarks of their respective owners.

To the extent that this software allows the user to store, display, and otherwise manipulate various forms of
data, including, without limitation, multimedia content such as photographs, movies, music and other binary
large objects (blobs), use of any single blob may potentially infringe upon numerous different third-party
intellectual and/or proprietary rights. It is the user's responsibility to avoid infringements of any such third-
party rights.

RESTRICTED RIGHTS/SPECIAL LICENSE RIGHTS

Software and documentation acquired with US Government funds are provided with rights as follows: (1) if
for civilian agency use, with Restricted Rights as defined in FAR 52.227-19; (2) if for Dept. of Defense use, with
rights as restricted by vendor's standard license, unless superseded by negotiated vendor license as prescribed
in DFAR 227.7202. Any whole or partial reproduction of software or documentation marked with this legend
must reproduce the legend.

iii

Contents

Introduction to the INFORMIX-4GL CGI Library
Who Should Read this Document 1
Overview of the INFORMIX-4GL CGI Library 2

Accessing Environment Variables and Form Values 2
Printing Data to the Output Document 2
Other CGI and 4GL Utility Functions 3

Installing the INFORMIX-4GL CGI Library
Downloading and Installing the Library 5

Using the INFORMIX-4GL CGI Library
The Steps Needed for an ESQL/C CGI Script 8

Setting Up 8
Starting the CGI Processing 9
Sending the MIME Type 9
Sending the Title 10
Getting the Values of Environment Variables 10
Getting the Values of Form Elements 10
Deciding What Task To Perform Based On How the Script Was Invoked 11
Interacting With Databases 12
Printing Data to the Output Page 13

Using REPORT Formatters 14
Printing Forms 16

Cleaning Up 20
Setting Informix-specific Environment Variables 20
Compiling the Script 22

A 4GL CGI Template 22

INFORMIX-4GL CGI Library Reference
Functions for Getting Environment Variable and Form Values 25

iv INFORMIX-NewEra CGI Class Library

Functions for Printing Data to a Web Page 27
Other CGI Utility Functions 29
Other 4GL Utility Functions 30

Debugging and TroubleShooting
Debugging Tips 35
General Hints 37
Troubleshooting 38

Background To HTML and Gateway Scripts
Introduction to HTML 39
Creating Forms on the Web 40

Using the <FORM> Tag 40
Interface Elements in a Form 40

Gateway Scripts 43
Further Information 44

Index 45

Introduction to the INFORMIX-4GL CGI Library 1

Introduction to the INFORMIX-
4GL CGI Library

The INFORMIX-4GL CGI Library is a function library that extends the
existing functionality of the INFORMIX-4GL product to enable you to build
web-based applications (CGI scripts) that interact with databases.

You can use the functions in the 4GL CGI Library to dynamically produce
web pages based on data held in your corporate databases. Your applications
can interact with a database in any way you like, such as querying the
database and displaying the results, or changing or updating the database.

You can dynamically format data found in your SQL databases for the web
as HTML reports, forms, listings, catalogs, on-line documents and so on.

Who Should Read this Document
This document is intended for existing INFORMIX-4GL users who wish to
learn how to build web-based INFORMIX-4GL applications.

This document does not teach how to use the standard INFORMIX-4GL
functionality . Please see the printed INFORMIX-4GL documentation for
information on INFORMIX-4GL.

This document also assumes that you understand the concepts of using the
web, writing HTML tags, and using CGI scripts. However, for newcomers to
the subject, we have included background information on HTML and CGI
scripting, in the section Background To HTML and Gateway Scripts (page
39).

2 INFORMIX-4GL CGI Library

Overview of the INFORMIX-4GL CGI Library
The INFORMIX-4GL CGI Library contains functions that you can use inside
a CGI script to process input from web-based forms, access CGI environment
variables, and print data to an output file such as a web page.

Inside a CGI script, you have access to the full range of INFORMIX-4GL
functionality.

Accessing Environment Variables and Form Values

The 4GL CGI Library includes several functions to read and interpret the
information passed from an HTML form via CGI to your 4GL application.

■ icgi_start() (page 25)

This function initializes the application.

■ icgi_getvalue(char *name) (page 26)

This function gets the value of a form entry or an environment
variable.

■ icgi_getnvalue(char *name, int n) (page 26)

This function gets the nth value of a form entry

■ icgi_free() (page 27)

This function frees the memory that was allocated to the form entry
list.

Printing Data to the Output Document

The 4GL CGI Library includes three functions for printing to a Web page.

■ icgi_mimetype(char *Mimetype) (page 27)

This function sends the MIME type to the output Web page.

■ icgi_print_text(char *Text) (page 28)

This function prints text to the output document.

■ icgi_print_blob(char* Mimetype, $loc_t Blob_loc) (page 28)

This function prints Informix BLOB data to the output document.

Introduction to the INFORMIX-4GL CGI Library 3

Other CGI and 4GL Utility Functions

The 4GL CGI Library includes other useful functions for setting environment
variables, URL-encoding and decoding strings, and cover functions for basic
UNIX operations, such as cd and chmod.

4 INFORMIX-4GL CGI Library

Installing the INFORMIX-4GL CGI Library 5

Installing the INFORMIX-4GL
CGI Library

Although anyone can download the INFORMIX-4GL CGI Library, only
registered INFORMIX-4GL users will be able to install it and use it. The
library is an add-on product to INFORMIX-4GL releases 4.16 UC1 and 6.04
UC1 for Unix, and only works when used in conjunction with the underlying
INFORMIX-4GL software.

At present, the INFORMIX-4GL CGI Library is available only by
downloading it from a web browser. It is not available through ftp.

Downloading and Installing the Library
1. To download the compressed tar file containing the 4GL CGI Library,

select:

/cgi-bin/transmittal?2

2. Copy the downloaded tar file to your INFORMIXDIR if it is not
already there. (You may need to be logged in as root to do this step.)

3. Uncompress the tar file by using:

uncompress 4glcgi.tarZ

4. Untar the tar file by using:

tar -xf 4glcgi.tar

5. Run the installation process by using:

./installwk

The tar files include a file called wkfiles in the etc directory. This file
contains the list of files that will be installed by the install script.

6 INFORMIX-4GL CGI Library

Using the INFORMIX-4GL CGI Library 7

Using the INFORMIX-4GL CGI
Library

This section discusses how to use the INFORMIX-4GL CGI Library.

The chapter uses an example script to illustrate the steps involved in writing
a 4GL CGI script. The example discussed in this chapter presents a form that
lets the user select a sport. The CGI script displays information about all the
products in the Stock table whose description contains the name of the
chosen sport.

The form has a text field called YourName and a set of radio buttons called
RB1. The name-value pair for a set of radio buttons consists of the name of
the set and the value of the selected button.

The example script uses a REPORT formatter to display the results of the
query in a single table. The output page not only shows the results of the
query, but also displays the form again, so the user can submit another query
without going back a page in the web browser.

The script is invoked by a pre-script, which sets the values of the Informix-
specific environment variables.

Execute the Script:

/cgi-bin/pre-scriptfg

View the Pre-script:

pre-scriptfg.htm

View the Script:

scriptfg.4gl

8 INFORMIX-4GL CGI Library

The Steps Needed for an ESQL/C CGI Script
■ Setting Up (page 8)

■ Starting the CGI Processing (page 9)

■ Sending the MIME Type (page 9)

■ Sending the Title (page 10)

■ Getting the Values of Environment Variables (page 10)

■ Getting the Values of Form Elements (page 10)

■ Deciding What Task To Perform Based On How the Script Was
Invoked (page 11)

■ Interacting With Databases (page 12)

■ Printing Data to the Output Page (page 13)

❑ Using REPORT Formatters (page 14)

❑ Printing Forms (page 16)

■ Cleaning Up (page 20)

■ Setting Informix-specific Environment Variables (page 20)

■ Compiling the Script (page 22)

The section A 4GL CGI Template (page 22) provides a template for a 4GL CGI
script.

Setting Up

At the top of your script, define the globals needed by the script, if any. The
example script, scriptfg.4gl, defines globals to represent the quote sign (’), the
request method, the script name, the value of the text field containing the
user’s name, the sport that the user selected, and the record for the database
query:

GLOBALS

DEFINE

g_quote CHAR(1),

g_request_method CHAR(12),

g_scriptname CHAR(60),

Using the INFORMIX-4GL CGI Library 9

g_dear_user CHAR(30),

g_sport_chosen CHAR(30)

DEFINE

p_sport_prod RECORD

description CHAR(15),

stock_num INTEGER,

manu_code CHAR(3),

qty_on_hand INTEGER,

unit CHAR(4),

unit_price MONEY(6,2))

END RECORD

END GLOBALS

Starting the CGI Processing

Call the icgi_start() function to initialize the structures containing the values
of the environment variables and form field values:

MAIN

IF (icgi_start() != 0) THEN

CALL html_error_msg()

END IF

Sending the MIME Type

Send the MIME type for the output document before writing anything to the
output document:

CALL icgi_mimetype("text/html")

10 INFORMIX-4GL CGI Library

Sending the Title

Before writing data to the body of the Web page, you need to send the header
information, such as the <HTML>, <HEAD> and <BODY> tags. Use the
icgi_print_text() function to print the header information:

CALL icgi_print_text("<HTML><HEAD>")

CALL icgi_print_text("<TITLE>Welcome to the Sports
Database</TITLE>")

CALL icgi_print_text("</HEAD><BODY>")

Getting the Values of Environment Variables

Use the icgi_get_value() function to get the values of environment variables.
For example, if you want the script to perform different tasks depending on
the request method, you need to get the value of the REQUEST_METHOD
environment variable. If your script presents a form that re-invokes the
script, you need to get the value of the SCRIPT_NAME environment
variable:

LET g_quote = "\""

LET g_request_method = icgi_getvalue("REQUEST_METHOD")

LET g_script_name = icgi_getvalue("SCRIPT_NAME")

LET g_script_name = g_quote, g_script_name CLIPPED, g_quote

Getting the Values of Form Elements

Use the icgi_getvalue() function to get the value of a form element. The
following code shows how to get the values of the YourName field and RB1
fields. The YourName field is a text field, and RB1 is a set of radio buttons,
where each radio button specifies a kind of sport, such as football or tennis:

LET g_dear_user = icgi_getvalue("YourName")

LET g_sport_chosen = icgi_getvalue("RB1")

You can use the function icgi_getnvalue() to get the nth value of a form
element. This would be applicable if the form has multiple elements with the
same name, or the element is a multiple selection list, which can return
multiple values.

Using the INFORMIX-4GL CGI Library 11

The function icgi_getvalue() returns an empty string if the specified form
entry does not exist, or has no value. Similarly, icgi_getnvalue() returns an
empty string if the form entry does not exist or does not have an nth value.
For example:

/* If no sport is selected, print a warning msg*/

IF (LENGTH (g_sport_chosen) == 0) THEN

CALL icgi_print_text("<H2>Incomplete Form</H2> ")

Deciding What Task To Perform Based On How the Script Was
Invoked

You can write your script so that its behavior depends on whether the script
was invoked directly by opening its URL, or was invoked when a form was
submitted.

You can use the REQUEST_METHOD to determine how the script was
invoked. If the request method is "GET", the script was invoked directly from
the URL rather than through the form. If the request method is "POST", the
script was invoked from the form. (This last statement is true only if the form
uses the POST method.)

The following code shows how the script determines what action to take,
based upon the REQUEST_METHOD.

CASE g_request_method

WHEN "GET"

called without a form, so simply output the query
form

CALL sport_product_form_long()

WHEN "POST"

the post method means a form has been submitted,

so process the results

IF (LENGTH (g_sport_chosen) == 0) THEN

CALL icgi_print_text("<H2>Incomplete Form</H2> ")

CALL icgi_print_text("<P>Please select a sport
before ")

12 INFORMIX-4GL CGI Library

CALL icgi_print_text("you press the Submit
button.</P>")

ELSE

if a sport was selected, submit the query to the DB

CALL query_sport()

END IF

CALL icgi_print_text("
<HR>
<H2>")

CALL icgi_print_text("Would you Like to Submit Another
Enquiry?</H2>")

show the form without the intro

CALL sport_product_form_short(g_dear_user)

OTHERWISE

CALL html_error_msg()

END CASE

Interacting With Databases

You can use the standard 4GL functions to interact with databases. In the
example script, the query_sport() function uses the value sent by the form to
submit a query to the database, and then displays the results as a table
formatted by a REPORT formatter:

WHENEVER ERROR CONTINUE

LET p_where_clause = "description MATCHES \"",

"*", g_sport_chosen CLIPPED, "*",

"\"",

" ORDER BY stock_num"

LET p_where_clause = p_where_clause CLIPPED, ";"

LET p_sql_stmt = "SELECT description, stock_num, manu_code,
",

"unit, unit_descr, unit_price",

" from stock WHERE ",

p_where_clause

use the stores7 database

Using the INFORMIX-4GL CGI Library 13

DATABASE stores7

PREPARE sports_prod FROM p_sql_stmt

The function then creates a cursor, and uses it to iterate over the results of the
query and send each record in the query to the REPORT formatter, which
prints a table.

DECLARE prod_curs CURSOR FOR sports_prod

output sports product list to report

LET p_row_cnt = 0

START REPORT rpt_sport_prod_list

FOREACH prod_curs INTO g_sport.*

OUTPUT TO REPORT rpt_sport_prod_list(g_sport.*)

LET p_row_cnt = p_row_cnt + 1

END FOREACH

FINISH REPORT rpt_sport_prod_list

If no records were returned by the query, html_no_rows() is called to print an
explanation.

IF (p_row_cnt = 0) THEN

CALL html_no_rows()

END IF

Printing Data to the Output Page

To print data to a Web page, use the icgi_print_text() function. The example
script uses this function extensively to display its results. For example, the
following code shows the text that introduces the results of the query:

CALL icgi_print_text("<H1>Search Results</H1>")

CALL icgi_print_text("<P>Hello ")

CALL icgi_print_text(g_dear_user)

CALL icgi_print_text(". This is what the search revealed.
")

CALL icgi_print_text("We have the following items in our
store:</P>")

14 INFORMIX-4GL CGI Library

This rest of this section discusses how to use REPORT formatters and print
forms in detail. If you would like to skip these details, move on to Cleaning
Up.

Using REPORT Formatters

To use a REPORT formatter to format results in a 4GL CGI script, call
icgi_print-text() from inside the report.

The code for the REPORT formatter in the example script is shown below. It
displays the results in an HTML table. The PAGE HEADER prints the HTML
table heading. An HTML table row is printed ON EVERY ROW of the report.
At the end of each page, the PAGE TRAILER prints a </TABLE> tag to close
the HTML table.

REPORT rpt_sport_prod_list(p_sport_prod)

DEFINE

p_sport_prod RECORD

description CHAR(15),

stock_num INTEGER,

manu_code CHAR(3),

unit CHAR(4),

unit_descr CHAR(15),

unit_price MONEY(6,2)

END RECORD

DEFINE

p_string CHAR(2048)

OUTPUT

TOP MARGIN 0

BOTTOM MARGIN 0

PAGE LENGTH 200

FORMAT

FIRST PAGE HEADER

CALL printColumnHeadings()

PAGE HEADER

Using the INFORMIX-4GL CGI Library 15

CALL icgi_print_text("
")

printColumnHeadings starts the table

CALL printColumnHeadings()

ON EVERY ROW

start the HTML table row

CALL icgi_print_text("<TR>")

print the table cell data

description

CALL icgi_print_text("<TD>")

CALL icgi_print_text(p_sport_prod.description)

CALL icgi_print_text("</TD>")

stock_num

LET p_string = p_sport_prod.stock_num USING
"<<<<<<<<<"

CALL icgi_print_text(p_string)

CALL icgi_print_text("</TD>")

manu_code

CALL icgi_print_text("<TD>")

CALL icgi_print_text(p_sport_prod.manu_code)

CALL icgi_print_text("</TD>")

unit

CALL icgi_print_text("<TD>")

CALL icgi_print_text(p_sport_prod.unit)

CALL icgi_print_text("</TD>")

unit_descr

CALL icgi_print_text("<TD>")

CALL icgi_print_text(p_sport_prod.unit_descr)

CALL icgi_print_text("</TD>")

16 INFORMIX-4GL CGI Library

unit_price

CALL icgi_print_text("<TD>")

CALL icgi_print_text(p_sport_prod.unit_price)

CALL icgi_print_text("</TD>")

end the table row

CALL icgi_print_text("</TR>")

PAGE TRAILER

end the table

CALL icgi_print_text("</TABLE>")

END REPORT

Printing Forms

You can print forms just as you print any other kind of information, by using
the icgi_print_text() function. This section describes how the example script
prints a form displaying a text field, a set of radio buttons, a reset button, and
a submit button. You can, of course, build a form that has many other kinds
of elements. (Your script may not even display a form.) If you want to skip
the detailed discussion of the functions in the example script that print the
form, you can go directly to Cleaning Up (page 20).

The example script defines a function sport_product_form_long(), which
prints the introductory text that is needed when the user opens this page for
the first time. Then it calls the function sport_product_form_short() which
prints the actual form, consisting of the text field, the radio buttons and the
Submit button.

When the page is generated as a result of the user submitting the form, then
the introductory text is not needed (since we presume that the user is now
familiar with the form.) In this case, the main() function calls the
sport_product_form_short() function directly.

Here is the code for these sport_product_form_long():

Using the INFORMIX-4GL CGI Library 17

FUNCTION sport_product_form_long()

DEFINE p_string CHAR(2048)

Form Title and Greeting

CALL icgi_print_text("<H1>Welcome to the Sports
Database</H1>")

CALL icgi_print_text("<P>This form lets you find the
descriptions of various ")

CALL icgi_print_text("products in the Stock table of the
Sports Database. ")

CALL icgi_print_text("You can find the description of all
the products related ")

CALL icgi_print_text("to volleyball, basketball, tennis,
baseball or football. ")

CALL icgi_print_text("That is, you can find the products
whose description ")

CALL icgi_print_text("includes the name of these
sports.</P>")

CALL icgi_print_text("
")

CALL sport_product_form_short("Your_name")

RETURN

END FUNCTION

Printing the Form Itself

The sport_product_form_short() function prints the form.

The action for the form is the script itself, so that when the user submits the
form, the script is invoked again.

FUNCTION sport_product_form_short()

DEFINE p_string CHAR(2048)

CALL icgi_print_text("<FORM METHOD=\"POST\" ")

CALL icgi_print_text("ACTION=")

CALL icgi_print_text(g_script_name)

CALL icgi_print_text(" >")

18 INFORMIX-4GL CGI Library

Displaying the Text Field

The first element in the form is a text field called YourName, where the user
can enter their name if they want.

CALL icgi_print_text("<P>Please enter your name</P>")

CALL icgi_print_text("<INPUT TYPE=\"text\" NAME=\"YourName\"
SIZE=30 VALUE=")

CALL icgi_print_text(dearUser)

CALL icgi_print_text("</P>")

Displaying the Radio Buttons

The second element is a set of radio buttons, called RB1. Each radio button
specifies a kind of sport, such as volleyball, basketball, tennis, baseball, and
football.

CALL icgi_print_text("<P>What kind of sport are you
interested in?")

CALL icgi_print_text(" We will tell you about all the
products related")

CALL icgi_print_text(" to that sport that we carry in our
store.</P>")

The radio buttons are displayed in an unordered list.

CALL icgi_print_text("")

CALL icgi_print_text("<l1><input type=\"radio\" name=\"RB1\"
VALUE=\"volleyball\">volleyball
")

CALL icgi_print_text("<l1><input type=\"radio\" name=\"RB1\"
VALUE=\"basketball\">basketball
")

CALL icgi_print_text("<l1><input type=\"radio\" name=\"RB1\"
VALUE=\"tennis\">tennis
")

CALL icgi_print_text("<l1><input type=\"radio\" name=\"RB1\"
VALUE=\"baseball\">baseball
")

CALL icgi_print_text("<l1><input type=\"radio\" name=\"RB1\"
VALUE=\"football\">football
")

CALL icgi_print_text("")

Using the INFORMIX-4GL CGI Library 19

Displaying the Reset and Submit Buttons, and Ending the Form

The form has a Reset and a Submit button:

CALL icgi_print_text("<INPUT TYPE=\"submit\" VALUE=\"Submit
Query\">")

CALL icgi_print_text("</FORM> <HR>")

RETURN

END FUNCTION

This is what the form should look like:

Begin linear form:

Welcome to the Stores Database
This form lets you find the descriptions of various products in the Stock table
of the Stores Database. You can find the description of all the products related
to volleyball, basketball, tennis, baseball or football. That is, you can find the
products whose description includes the name of these sports.

Please enter your name:

What kind of sport are you interested in? We will tell you about all the
products relevant to that sport that we carry in our store.

❍ volleyball

❍ basketball

❍ tennis

❍ baseball

❍ football

Reset

Submit Now
End linear form.

20 INFORMIX-4GL CGI Library

Cleaning Up

After your script has finished sending data to the output file, it should close
the Web page properly, by printing </BODY> and </HTML> tags, along
with any other footer information you want.

Also, it is good policy to free the memory allocated to the environment
variables and form field values by calling the icgi_free() function.

The following code illustrates the final lines of an example main() function:

CALL icgi_print_text("</BODY></HTML>")

LABEL main_exit:

CALL icgi_free()

END MAIN

Setting Informix-specific Environment Variables

The Informix-specific environment variables, INFORMIXDIR and INFOR-
MIXSERVER, are not set automatically when a CGI script is invoked. You
must take steps to set them.

The INFORMIXDIR variable must be set before running a compiled 4GL
executable, such as a compiled CGI script.

If the INFORMIXDIR variable is not set at runtime, the executable uses the
directory "/usr/informix" for INFORMIXDIR. If you have already installed
the Informix products in another directory, you can create a symbolic link to
/usr/informix, for example:

ln -s /usr/infmx7.10 /usr/informix

The INFORMIXSERVER environment variable must be set before you try to
connect to a database.

You can use the function i4gl_setenv() to change environment variables from
within the CGI executable. For example:

DEFINE env_str CHAR(256),

return_value INTEGER

LET env_str = "INFORMIXSERVER=minnie"

Using the INFORMIX-4GL CGI Library 21

LET return_value = i4gl_setenv(env_str)

The function i4gl_setenv() returns a non-zero value if the function is unable
to alter the environment.

However, if you set the value of the INFORMIXSERVER environment
variable within the body of the script, your compiled program will only work
when placed on a server that can access the appropriate server.

Another option is to ensure that the administrator for the Web Server
workstation where your script resides sets the Informix environment
correctly for the server. However, some HTTP servers reset the environment
at start-up. (We found the NCSA server resets the environment while the
CERN server does not.)

You can also define a "pre-script" or wrapper script for your script. The pre-
script can set the INFORMIXDIR and INFORMIXSERVER environment
variables, and then call the script. Then if you move your program to another
server, you simply need to edit the pre-script to point to the new INFOR-
MIXDIR and INFORMIXSERVER, instead of having to edit your script and
recompile it.

The following script is an example of a pre-script.

#!/bin/sh

DISPLAY = :0.0

INFORMIXDIR=/release/dir/7.20.LV3PJ

INFORMIXSERVER=minnie

export DISPLAY INFORMIXDIR INFORMIXSERVER

Change this to reflect the script to be invoked

/release/dir/home/cgi-bin/scriptfg.cgi

#_____________________DONE_________________________

To make an HTML form invoke the pre-script, specify the name of the pre-
script as the action of the form, for example:

icgi_print_text("<FORM METHOD=\"POST\"
ACTION=\"/release/dir/home/cgi-bin/pre-scriptfg\">");

which generates the following HTML text:

<FORM METHOD="POST" ACTION="/release/dir/home/cgi-bin/pre-
scriptfg">

22 INFORMIX-4GL CGI Library

Note that the value of the SCRIPT_NAME environment variable is the script
that CGI invoked, therefore if a script is invoked by a pre-script, the value of
the SCRIPT_NAME environment variable is the name of the pre-script.

Compiling the Script

Compile your 4GL CGI script in the same way that you compile other 4GL
scripts. For example:

c4gl -I${INFORMIXDIR}/incl sample1.4gl -o sample1.exe
-L${INFORMIXDIR}/lib -l4glcgi

HP note: If you are compiling on a Hewlett Packard system and are using the
shared library, you also need to pass the -Wl,+s options to the compiler.
These options , to specify that during runtime, the executable should look at
the SHLIB_PATH environment variable first to find the shared library. For
example:

c4gl -Wl,+s -I${INFORMIXDIR}/incl sample1.4gl -o sample1.exe
-L${INFORMIXDIR}/lib -l4glcgi

When the program is compiled, make sure it has the correct access privileges
for anonymous users to execute. Then move it to the directory on your Web
server where executable CGI programs reside. (This directory is usually
called cgi-bin.) If you do not know where this directory is, ask your Web
Server Administrator.

A 4GL CGI Template
The following code provides a basic template for a 4GL CGI application:

MAIN

DEFINE myfield CHAR(50)

send the MIME-type first

CALL icgi_mimetype("text/html")

IF (icgi_start() == 0) THEN

send error message in HTML

RETURN

Using the INFORMIX-4GL CGI Library 23

END IF

get the form entries

LET myfield = icgi_getvalue("myfield")

construct SQL

execute SQL

print HTML

CALL icgi_print_text("<TITLE>My HTML Page</TITLE>")

CALL icgi_print_text("<P>etc ... </P>")

clean-up and return

CALL icgi_free()

RETURN

END MAIN

24 INFORMIX-4GL CGI Library

INFORMIX-4GL CGI Library Reference 25

INFORMIX-4GL CGI Library
Reference

■ Functions for Getting Environment Variable and Form Values (page
25)

■ Functions for Printing Data to a Web Page (page 27)

■ Other CGI Utility Functions (page 29)

■ Other 4GL Utility Functions (page 30)

Functions for Getting Environment Variable and Form Values

icgi_start()

This function initializes the CGI processing. Your script must call icgi_start()
before retrieving environment variable or form values.

The function icgi_start() does the three tasks required to receive and interpret
the data passed from CGI:

■ Reads and stores the information from CGI specific environment
variables.

■ Reads the URL-encoded query string and decodes it.

■ Parses the query string into a list of form entries.

This function return non-zero upon successful completion and zero upon
failure:

icgi_start() . 25
icgi_getvalue(char *name) . 26
icgi_getnvalue(char *name, int n) . 26
icgi_free() . 27

26 INFORMIX-4GL CGI Library

IF (icgi_start() == 0) THEN

error handling code here

END IF

icgi_getvalue(char *name)

The function icgi_getvalue() returns the value of either an environment
variable or a form element as a string. For example:

DEFINE request_method CHAR(4)

LET request_method = icgi_getvalue("REQUEST_METHOD")

DEFINE customer_num_field CHAR(15)

LET customer_num_field = icgi_getvalue("customer_num_field")

The icgi_getvalue() returns a NULL string if the field or variable is non-
existent or is existent but does not have a corresponding value:

DEFINE fld1 CHAR(40)

LET fld1 = icgi_getvalue("field1")

IF (fld1 IS NULL) THEN

handle empty field

END IF

Parameters:

icgi_getnvalue(char *name, int n)

The function icgi_getnvalue() returns the nth value of a form element as a
string. Use this function when a form has multiple elements with the same
name, or has a multiple selection list, which can return multiple values.

For example:

DEFINE val3 CHAR(15)

LET val3 = icgi_ngetvalue("colorchoice" 3)

If a form has multiple fields with the same name, the one closest to the top of
the form is number 1; the second highest is 2, and so on.

name The name of the form element or environment variable
whose value you want to get.

INFORMIX-4GL CGI Library Reference 27

The function icgi_getnvalue() returns a NULL string if the field is non-
existent or does not have an nth value.

Parameters:

icgi_free()

The function icgi_free() frees the memory that was allocated to storing
variables and form entries:

MAIN

IF (cgi_start() == 0) THEN

handle error

END IF

continue CGI application

LABEL main_exit:

CALL cgi_free()

END MAIN

Functions for Printing Data to a Web Page

icgi_mimetype(char *Mimetype)

This function prints the MIME-type (also known as "Content Type") for the
output document.

When sending a document to be displayed in a web browser, the MIME-type
should be the sent first, so the Web browser knows what kind of content to
expect.

name The name of the form element or environment variable
whose value you want to get.

n The number of the field whose value is to be retrieved, for
example, 2, for the second occurrence.

icgi_mimetype(char *Mimetype) . 27
icgi_print_text(char *Text) . 28
icgi_print_blob(char* Mimetype, $loc_t Blob_loc) . 28

28 INFORMIX-4GL CGI Library

Call the function icgi_mimetype() with a valid MIME-type before attempting
to print anything else to the output document. Typical HTML output would
require the MIME-type "text/html", for example:

FORMAT

FIRST PAGE HEADER

CALL icgi_mimetype("text/html")

Parameters:

icgi_print_text(char *Text)

The function icgi_print_text() prints text to the output document. The
function appends a new-line to the end of the text.

The following 4GL statements...

CALL icgi_print_text("")

CALL icgi_print_text("Bolded Text")

CALL icgi_print_text("")

... results in the following HTML source text:

Bolded Text

which appears in the browser as:

Bolded Text

Parameters:

icgi_print_blob(char* Mimetype, $loc_t Blob_loc)

The function icgi_print_blob() prints Informix BLOB data to the output
document (BLOB data types are available with the OnLine engine). The
function takes a string containing a valid MIME-type and a BLOB variable
(TEXT or BYTE). The function will handle either type of BLOB, whether it is
located in memory or a file.

Mimetype A valid MIME type as a string.

Text The text to be printed.

INFORMIX-4GL CGI Library Reference 29

DEFINE mime_type CHAR(30),

image_blob BYTE

LOCATE image_blob IN MEMORY # can also be located in file

SELECT image_blob_col

FROM image_table

INTO image_blob

WHERE primary_key = 1000

LET mime_type = "image/gif"

CALL icgi_print_blob(mime_type, image_blob)

FREE image_blob

You must locate the BLOB correctly prior to fetching it from the database. For
more information about accessing BLOB data from 4GL, refer to the
INFORMIX-4GL Reference Manual.

If the output is a BYTE BLOB, this function is typically called "stand-alone"
without prior or subsequent HTML text, therefore a valid MIME-type should
be used. For example, if the data is a GIF image:

CALL icgi_print_blob("image/gif", my_gif_blob)

If the output is a TEXT BLOB, this function might be called amongst other
HTML text (using calls to icgi_print_text()), therefore the MIME-type has
already been sent using icgi_mimetype(). In this case, pass a NULL or empty
string. For example:

LET mime_type = NULL

CALL icgi_print_blob(mime_type, my_text_blob)

Parameters:

Other CGI Utility Functions

Mimetype A valid MIME type as a string
Blob_loc A location for a Blob

icgi_decode(char *string) . 30
icgi_encode(char *string) . 30

30 INFORMIX-4GL CGI Library

icgi_decode(char *string)

This function decodes a URL-encoded string and returns the decoded string.

DEFINE decoded_str CHAR(2048),

encoded_str CHAR(2048)

LET decoded_str = icgi_decode(encoded_str)

Parameters:

icgi_encode(char *string)

The function icgi_encode() encodes a plain text string using URL-encoding
rules and returns the encoded string.

DEFINE decoded_str CHAR(2048),

encoded_str CHAR(2048)

LET encoded_str = icgi_encode(decoded_str)

Parameters:

Other 4GL Utility Functions

string The string to decode.

string A string to encode using URL-encoding rules.

i4gl_setenv(char *string) .31
i4gl_access(char *file, char *permissions) .31
i4gl_chmod(char *filename, char* mode) .32
i4gl_cd(char *directory) .32
i4gl_tmpfile(char *bufferForTmpFile) .33
i4gl_getpid() .32
i4gl_pwd() .33
i4gl_rm(char *filename) .33
i4gl_rm(char *filename) .33

INFORMIX-4GL CGI Library Reference 31

i4gl_setenv(char *string)

The function i4gl_setenv() allows you to change environment variables from
within the CGI executable. If the function is unable to alter the environment,
it returns a non-zero value.

DEFINE env_str CHAR(256),

return_value INTEGER

LET env_str = "INFORMIXSERVER=garfield"

LET return_value = i4gl_setenv(env_str)

Parameters:

i4gl_access(char *file, char *permissions)

The function i4gl_access() allows the 4GL application to query the accessi-
bility of a file. The first parameter is a string containing the file name. The
second parameter is a string containing one, some or all of the following
characters:

■ "r" to check whether the file is readable

■ "w" to check whether the file is writable

■ "x" to check whether the file is executable

The function returns an integer. The returned value is the same as for the
UNIX/C access() function.

DEFINE return_value INTEGER,

access CHAR(3),

file_name CHAR(250)

LET access = "w"

LET file_name = "myfile.htm"

LET return_value = i4gl_access(file_name, access)

Parameters:

string A string consisting of the environment variable and the
value to set it to.

file The name of a file.
permissions A string consisting of any combination of "r", "w", and "x",

indicating the permissions to be checked.

32 INFORMIX-4GL CGI Library

i4gl_cd(char *directory)

The function i4gl_cd() allows the 4GL application to change the current
working directory. It returns zero if successful, non-zero if unsuccessful.

DEFINE return_value INTEGER,

directory CHAR(256)

LET directory = "/www/html"

LET return_value = i4gl_cd(directory)

Parameters:

i4gl_chmod(char *filename, char* mode)

The function i4gl_chmod() changes the permissions of a file. The mode is the
same numeric permissions (read/write/execute by owner/group/other)
that can be passed to the Unix utility chmod. It returns the same code number
that the chmod utility returns.

DEFINE return_value INTEGER,

file_name CHAR(60),

mode CHAR(4)

LET file_name = "myfile.htm"

LET mode = "664"

LET return_value = i4gl_chmod(file_name, mode)

Parameters:

i4gl_getpid()

The function i4gl_getpid() returns an integer indicating the current process
ID.

DEFINE pid INTEGER,

LET pid = i4gl_getpid()

directory The directory to switch to as the current working directory.

filename A string of the filename whose mode is to be changed.
mode A string indicating a permission mode.

INFORMIX-4GL CGI Library Reference 33

i4gl_pwd()

The function i4gl_pwd() returns a string indicating the current working
directory.

DEFINE directory CHAR(256)

LET directory = i4gl_pwd()

i4gl_rm(char *filename)

The function i4gl_rm() deletes a file from the file system. It returns the same
code number that the Unix unlink utility does.

DEFINE filename CHAR(60)

DEFINE return_value INTEGER

LET filename = "/mydir/tmpfile.htm"

LET return_value = i4gl_rm(filename)

Parameters:

i4gl_tmpfile(char *bufferForTmpFile)

The function i4gl_tmpfile() generates a filename with a fully qualified path
that can be used as a temporary file. The argument bufferForTmpFile can be
NULL. This function provides the same functionality as the UNIX/C
tmpname facility.

DEFINE path CHAR(256)

LET path = i4gl_tmpfile()

Parameters:

Filename A string of the name of the file to be deleted.

bufferForTmp-
File

The name of a file to use as a temporary file. This can be
NULL, in which case a default temp file is generated.

34 INFORMIX-4GL CGI Library

Debugging and TroubleShooting 35

Debugging and Trouble-
Shooting

This chapter includes the following:

■ Debugging Tips (page 35)

■ General Hints (page 37)

■ Troubleshooting (page 38)

Debugging Tips
The following steps are recommended for testing your program:

■ Make sure the program runs from the command line. (page 35)

■ Run the program from the command line as an anonymous user .
(page 36)

■ Use printing functions to track the progress of the program. (page 36)

■ Invoke the program from a Web browser. (page 36)

Make sure the program runs from the command line.

When the program is run from the command line, you should see the text
generated for the output document, including the HTML tags. If your
program processes input received from a form, it will not do much if it is
invoked from the command line, but at least you should see the text for the
start of the output document.

36 INFORMIX-4GL CGI Library

The icgi_start() function checks if the REQUEST_METHOD and
SERVER_NAME environment variables are set. If they are, it returns TRUE,
otherwise it returns FALSE. If the progress of your program depends on the
icgi_start() function being successful, you must set the REQUEST_METHOD
and SERVER_NAME environment variables before invoking your program
in the command line.

If your program processes values sent by a form, you can hardwire the values
in the program, or pass them from the command line.

Run the program from the command line as an anonymous user .

This simulates how the Web server invokes a CGI program. You personally
may have set up your environment to define INFORMIXDIR and INFOR-
MIXSERVER, or to define other parameters that the CGI script uses.
However, when the Web server invokes a CGI script, it will use the same
environment settings that an anonymous user would have.

Use printing functions to track the progress of the program.

You can use the function icgi_print_text() to print data as the program runs.

If you run the program from the command line, the printing functions send
their output to the command line window. If you invoke the program from a
Web browser, the printing functions send their output to the generated Web
page.

Invoke the program from a Web browser.

If the program runs successfully from the command line, copy it to your CGI
executable directory, and try invoking it from a Web browser. If it does not
work, check the following:

■ Does the program have permissions set for Web users to execute it?

■ Are the INFORMIXDIR and INFORMIXSERVER environment
variables set correctly? You can use a pre-script to set these
environment variables and then invoke the program. For example:

#!/bin/sh

DISPLAY = :0.0

INFORMIXDIR=/release/dir/7.20.LV3PJ

Debugging and TroubleShooting 37

INFORMIXSERVER=minnie

export DISPLAY INFORMIXDIR INFORMIXSERVER

Change this to reflect the script to be invoked

/release/dir/home/cgi-bin/script11.cgi

#_____________________DONE_____________________

If you use a pre-script, the value of the SCRIPT_NAME environment
variable is the pre-script.

General Hints

You cannot print befor the header or after the footer have been
processed

If the expected text does not appear in the output document, check that your
script did not try to print data before sending the MIME type and printing
header information (such as <HTML><BODY>) or after printing footer
information (such as </BODY></HTML>).

You can use SCRIPT_NAME to refer to the current script

If your script displays a form that re-invokes the same script, you can use the
value of the SCRIPT_NAME environment variable as the value of the form.
To start a form, use the ixHtmlDoc::beginForm() function, specifying the
script to use as the action of the form. For example:

icgi_print_text("<FORM METHOD=\"POST\" ");

icgi_print_text("ACTION=");

icgi_print_text(icgi_getvalue("SCRIPT_NAME"));

icgi_print_text(" >");

If you use a pre-script, the value of the SCRIPT_NAME environment variable
is the pre-script.

38 INFORMIX-4GL CGI Library

Troubleshooting
When you tryto invoke the script from a Web browser, you get a "Document
contains no data" error message.

Are you invoking a pre-script that sets INFORMIXDIR and INFOR-
MIXSERVER before invoking the program? Is your pre-script
executable? Is your program executable? Does your pre-script call
the correct script?

When you try to invoke your program, the Web browser never returns.

This often indicates an uncaught error. Stop the process (by going
back a page in the browser if necessary). If possible, check the
processes on the server and kill the dead process (so as not to
burrden the server). Try running the program from the command
line to find out what is wrong.

Your form is not active – You press the Submit button and nothing happens.

Did you end the form?

Your script submits a query to a database based on values received from a
form, but the query never finds any matches when you think it should.

Database queries are case sensitive, for example "*Ball*" does not
match "tennisball." Check that the case of the form value matches the
case of the items in the database. Be sure to check the case of the
value returned by the form element, not the label of the form
element. For example, the label of the form element, such as a radio
button, might be "tennis", whereas the return value is "Tennis."

Background To HTML and Gateway Scripts 39

Background To HTML and
Gateway Scripts

This section briefly discusses HTML, web-based forms, and gateway scripts,
and lists a variety of sources for more information.

Introduction to HTML
HTML is a markup language for creating pages to be viewed on the world
wide web. To view pages on the web, you need a browser such as Netscape,
but presumably since you are reading this page on the web, you have access
to a browser.

If you have never seen a sample HTML file, select the View menu in your
browser’s menu bar, and choose the Document Source option. A file will
open to show the HTML source text for this page. This source text is more
complicated than HTML source text usually needs to be, since every
paragraph has a name reference (so that the index can find paragraphs).
However, it should give you some idea of what HTML source text looks like.

To specify the layout of text in a web browser, you use inline tags such as <P>
to start a paragraph and </P> to end a paragraph. Other examples are:

<H1> starts a first level heading

</H1> ends a first level heading

<H2> starts a second level heading

</H2> ends a second level heading

40 INFORMIX-4GL CGI Library

Creating Forms on the Web
The purpose of the Informix Webkits is to enable you to build Web-based
applications that interact with databases. Often you will want your appli-
cation to interact with the user, for example, to let the user specify values to
use in a database query. This section discusses how to use forms to solicit
input from the users.

This section contains the following subsections:

■ Using the <FORM> Tag (page 40)

■ Interface Elements in a Form (page 40)

■ Gateway Scripts (page 43)

Using the <FORM> Tag

A form starts with the <FORM> tag, and ends with the </FORM> tag. All
interface elements in the form must be located between the start of the form
and the end of the form. If you want a form to do something useful with the
information selected by the user, the form must contain a Submit button.

The <FORM> tag specifies the request method and the action to be invoked
by the Submit button. For example:

<FORM METHOD = "POST" ACTION = "/cgi-bin/landscp1"

Interface Elements in a Form

A form contains interface elements that allow the user to make choices and
enter information. These interface elements include:

Begin linear form:

Text Fields

A text field is a one-line area that the user can type into. You can specify the
size of the field.

Please enter your name:

Background To HTML and Gateway Scripts 41

Text Areas

A text area is a multi-line area where a user can type into.

Please enter your address:

This is where you live.

Checkboxes

A checkbox acts as a toggle; if you press it when it is on, it switches off, and
vice versa. Checkboxes can be nested in lists.

Choose the plants you would like in your yard:

❏ Shrubs

❏ Azaleas

❏ Rhodedendrons

❏ Flowers

❏ Roses

❏ Sunflowers

❏ Marigolds

❏ Nasturtiums

Radio buttons

Radio buttons can be grouped together to form a set of choices. Only one
choice per set can be selected. When you select another radio button in the
set, the current choice is selected, and the previous choice is deselected.
Radiobuttons can be nested in lists.

Choose the kind of fence you would like:

❍ Painted Fence

❍ Natural Stain

❍ White Fence

❍ Green Fence

❍ Wire Fence

❍ No Fence

42 INFORMIX-4GL CGI Library

Pop-up menus

A pop-up menu displays up all the elements in the menu when you click on
it.

Please indicate the climate where you live:

• Wet winters, dry summers

• Rainy all year round

• Drought conditions most of the time

• Moderate winters, monsoonal summers

Fixed menus

For a fixed menu, you need to specify the size, which is the number of items
that are displayed in a scrolling box.

What yard theme do you prefer:

• Mostly lawn with a few flower beds

• Natural shrubs, native wildflowers

• Manicured lawn and hedges

• Flowers everywhere

• The woodsy effect with lots of trees

• Easy care paving with flowers in pots

• Orchard look - lots of fruit trees

• Vegetable garden

• Herb garden

• Patio with gazebo

Reset buttons

When a Reset button is pressed, it sets all the form elements back to their
initial values.

Reset

Background To HTML and Gateway Scripts 43

Submit buttons

If you want your form to do anything useful, it must have a Submit button.

When the user presses the Submit button, it invokes the action specified by
the form. If a form does not have a Submit button, the user can select items
in the form to their hearts content, but the form will never do anything.

The <FORM> tag has an option that allows you to specify what action is
invoked when the user “submits” the form. The action can open another web
page without using the information selected in the form, which is usually not
very useful. The more common specification for the action is to open a URL
that points to a “gateway script.”

Submit Now
End linear form.

Forms can have other elements that are not discussed here, such as hidden
fields and password fields. Please see an HTML reference source for a full
description of all form elements. The section Further Information on HTML
(page 44) lists several HTML reference sources on the Web.

Gateway Scripts
Gateway scripts are usually known as CGI (for common gateway interface)
scripts. A CGI script can be written in any language that is supported by the
server on which it resides. For example, on Unix servers you can run shell
scripts, Perl scripts, C scripts, and scripts written with Informix Webkits.

The gateway script must decode the input from the form, and output a
properly formatted Web page. You can use the Informix Webkits to write
scripts that decode information sent by forms, use the information to submit
queries to a database, and send the results of the query back to the user as
HTML source code that makes a Web page.

44 INFORMIX-4GL CGI Library

Further Information
This section tells you where to find more information.

Further Information on the World Wide Web

■ WWW FAQ

http://www.boutell.com/faq/

■ WorldWide Web Consortium's Style Guide for Online Hypertext

http://www.w3.org/hypertext/WWW/Provider/Style/Overview
.html

■ NCSA Httpd Overview

http://hoohoo.ncsa.uiuc.edu/docs/Overview.html

Further Information on HTML

■ HTML Primer

http://www.ncsa.uiuc.edu/General/Internet/WWW/HTMLPrime
r.html

■ Information about HTML

http://union.ncsa.uiuc.edu/HyperNews/get/www/html.html>

■ Composing Good HTML

http://www.cs.cmu.edu/~tilt/cgh/

More Information about Gateway Scripts

■ Information about the Common GateWay interface (CGI)

http://hoohoo.ncsa.uiuc.edu/cgi/intro.html

■ The Common Gateway Interface (CGI) Frequently Asked Questions
(FAQ) List

http://www.best.com/~hedlund/cgi-faq/faq.html

Index 45

Index

Symbols
 13
<BODY> 10
<FORM> 17

discussion 40
<H1> 13
<HEAD> 10
<INPUT TYPE = RADIO> 18
<INPUT TYPE = TEXT> 18
 18
<P> 13
<TD> 15
<TITLE> 10
<TR> 15
 18

Numerics
4GL CGI Library

downloading 5
function overview 2
installing 5
introduction 1
reference 25
using 7

4GL CGI scripts
compiling 22
template 22

4GL utility functions 30

A
Anonymous user

testing as 36
API reference 25

B
Background

to gateway scripts 39
to HTML 39

46 INFORMIX-4GL CGI Library

C
CGI Utility Functions 29
Checkboxes

forms 41
Cleaning up 20
Command line

running program from 35
Compiling

4GL CGI scripts 22

D
Databases

interacting with 12
Debugging

hints 35
Decoding URL-encoded strings 30
Defining

4GL CGI script 8
Displaying

data in a Web page 13
forms 16

Downloading
4GL CGI LIbrary 5

E
Encoding strings

with URL encoding 30
Ending

Web pages 20
Environment variables

getting values of 10
INFORMIXDIR 20
INFORMIXSERVER 20

F
Fixed menus

forms 42
Form elements

getting values of 10
Forms

<FORM> tag 40
checkboxes 41
creating 40
fixed menus 42
inactive 38
interface elements 40

Index 47

pop-up menus 42
printing 16
radio buttons 41
reset button 42
submit buttons 43
text areas 41
text fields 40

Functions
4GL utilities 30
CGI Utilities 29
for getting environment variable values 25
for getting form values 25
for printing to a Web page 27

Futher information 44

G
Gateway scripts

introduction 43
GET request method 11
Getting values

of environment variables 10
of form elements 10

H
HTML

introduction 39

I
i4gl_access() 31
i4gl_cd() 32
i4gl_chmod() 32
i4gl_getpid() 32
i4gl_pwd() 33
i4gl_rm() 33
i4gl_setenv()

reference 31
i4gl_tmpfile() 33
icgi_decode() 30
icgi_encode() 30
icgi_free() 27
icgi_getnvalue() 26
icgi_getvalue()

refrence 26
icgi_mimetype()

example use 9
reference 27

48 INFORMIX-4GL CGI Library

icgi_print_blob()
reference 28

icgi_print_text()
discussion 13
example use 13
reference 28

icgi_start() 25
Information

further 44
INFORMIX-4GL CGI Library

see 4GL CGI Library
INFORMIXDIR 20

checking for 38
setting in pre-script 36

INFORMIXSERVER 20
checking for 38
setting in pre-script 36

Informix-specific environment variables
setting 20

Installing
4GL CGI Library 5

Interacting
with databases 12

Introduction 1

M
Menus

fixed 42
pop-up 42

MIME-type
sending 9

O
Overview

4GL CGI Library 2

P
Pop-up menus

forms 42
POST request method 11
Prerequisites

for reading this document 1
Pre-scripts

for setting Informix-specific environment variables 21
Printing

data to a Web page 13

Index 49

functions for 27

R
Radio Buttons

displaying 18
Radio buttons

forms 41
Reference

API 25
Report formatters 14
REQUEST_METHOD 10
Reset buttons

displaying 19
forms 42

S
SCRIPT_NAME 10

re-invoking a script 37
Sending titles 10
Setting

Informix-specific environment variables 20
Setting Up 8
Starting

CGI Processing 9
Submit buttons

displaying 19
forms 43

T
Template

4GL CGI script 22
Text areas

forms 41
Text fields

displaying 18
forms 40

Titles
sending 10

Troubleshooting 38
hints 35

U
URL encoding

strings 30
Using

50 INFORMIX-4GL CGI Library

4GL CGI Library 7
report formatters 14

W
Web pages

displaying data 13
ending 20
functions for printing to 27

Wrapper script
for setting Informix-specific environment variables 21

Writing
data to a Web page 13

