
Aman Sinha, Richard Taylor, Mandar Pimpale, David Wilhite, Cindy Fung

Milano, Italy September 9 – September 10, 2003

Improving IBM Red Brick Warehouse

Query Performance

 IBM Corporation 2003

European Red Brick Users’ Group Conference 2003

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Talk Outline

§ Red Brick Philosophy

§ Basic Query Tuning Principles
§ More Tuning - Vista

§ 6.3 Enhancements to Improve Query Performance:
§ Memory-mapping of dimension index/tables

§ Dynamic SmartScan optimization

§ Locally segmented TARGETjoin

§ TARGETjoin performance improvements

§ Optimizer hints to specify STARindex for joins

§ Conclusions

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Red Brick Philosophy

§ Effective performance AND simple to use

§ Apply intelligence on optimization internally
§ Minimize user intervention

§ A good example is Parallelism on Demand
§ A few simple guidelines to determine when and how much

parallelism

§ Conscientiously design very few tuning knobs
§ Designs focus on reducing complexity externally

§ Conduct studies to determine best default settings
§ Not necessary for customers to continuously tune

§ Our goal is to provide the best performance with low cost of
ownership
§ Performance enhancements adhere to this philosophy

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Basic Query Tuning Principles

§ Red Brick STARjoins are the fastest
§ The most effective performance tuning is a good STAR schema

§ Will yield 80 – 99% performance gain

§ All other tuning efforts are relatively small refinements

§ Mix of indexes (STARs, TARGETs, Btree’s) are key to benefiting
from STARjoin plans
§ Leading dimension constraints STARindex will perform best

§ Consider tradeoff with TARGET indexes to perform TARGETjoins when
you can’t create too many STARindexes

§ Load fact table in STARindex order
§ Speeds up loads

§ Speeds up row fetches to the fact table

§ Partition data/indexes effectively into PSUs and segments to
maximize on parallelism speedup
§ See Query Performance Monitor case study

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Basic Query Tuning Principles - 2

§ Minimize spilling
§ Increase query memory limit, particularly for hashjoins

§ Same for optimized index builds, increase index tempspace

§ Use “set stats full;”, spilling reported in 1K values
§ User beware, not fully supported yet

§ Use several disks, or multi-disks logical volumes/disk arrays, for
tempspace directories to minimize disk contention
§ Same for versioning logs – put on a disk array or logical volume

§ Do not over commit on query parallelism
§ Join tasks per query should be equal or less than CPUs in system

§ Fetch tasks could be 1-2x join tasks, more if very slow I/O subsystem

§ Do not be stingy with memory
§ 2-4 GB memory per CPU, more even better

§ Allows for more I/O caching in the OS file system cache

§ Allows for MMAPing for queries and loads

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Basic Query Tuning Principles - 3

§ Look at query execution statistics with “set stats info;”
§ Reports plan choice and index(es) selected, degrees of parallelism

§ Reports CPU and time (elapsed) of query
§ If elapsed time significantly greater than CPU time

§ Query is waiting for I/O
§ May require disk tuning or increase memory to cache data

§ If CPU time is too high
§ Investigate query plan improvement or create better index(es)

§ If there is parallelism, (CPU/time) should be greater than 1 to benefit
§ Linear speedup is ratio equals number of join tasks

§ Optimize I/O performance
§ Separate indexes and data onto different disks, if not on a large striped

volume

§ Configure enough memory to MMAP dimension indexes and tables

§ Minimum of 6-10 disks per CPU

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Sample STARjoin Plans

§ Single Fact STARjoin

RISQL> explain select sales.promokey, dollars
> from promotion, sales
> where sales.promokey = promotion.promokey
> and promotion.promo_type = 400;

EXPLANATION
[
- EXECUTE (ID: 0) 5 Table locks (table, type): (PROMOTION,
Read_Only), (SALES, Read_Only), (PERIOD, Read_Only), (PRODUCT,
Read_Only), (STORE, Read_Only)
--- CHOOSE PLAN (ID: 1) Num prelims: 1; Num choices: 3; Type:
StarJoin;

Prelim: 1; Choose Plan [id : 1] {
BIT VECTOR SORT (ID: 2)
-- TABLE SCAN (ID: 3) Table: PROMOTION, Predicate:
(PROMOTION.PROMO_TYPE) = (400) }

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Sample STARjoin Plans - 2
§ Single Fact STARjoin
Choice: 1; Choose Plan [id : 1] {
EXCHANGE (ID: 4) Exchange type: Functional Join
-- FUNCTIONAL JOIN (ID: 5) 1 tables: SALES
---- EXCHANGE (ID: 6) Exchange type: STARjoin
------ STARJOIN (ID: 7) Join type: InnerJoin, Num facts: 1,
Num potential dimensions: 4, Fact Table: SALES, Potential Indexes:
SALES_STAR_IDX, SALES_PROMO_STAR_IDX;
Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION }

Choice: 2; Choose Plan [id : 1] {
EXCHANGE (ID: 8) Exchange type: Table Scan
-- FUNCTIONAL JOIN (ID: 9) 1 tables: PROMOTION
---- BTREE 1-1 MATCH (ID: 10) Join type: InnerJoin; Index(s):
[Table: PROMOTION, Index: PROMOTION_PK_IDX]
------ TABLE SCAN (ID: 11) Table: SALES, Predicate: <none> }

Choice: 3; Choose Plan [id : 1] {
EXCHANGE (ID: 12) Exchange type: Functional Join
-- FUNCTIONAL JOIN (ID: 13) 1 tables: SALES
---- EXCHANGE (ID: 14) Exchange type: TARGETjoin
------ TARGET JOIN (ID: 15) Table: SALES, Predicate: <none> ;
Num indexes: 1 Index(s): Index: PROMOKEY_TGTJOIN_IDX
-------- FUNCTIONAL JOIN (ID: 16) 1 tables: PROMOTION
---------- VIRTAB SCAN (ID: 17) }]

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Sample STARjoin Plans - 3
§ Fact-to-Fact STARjoin
RISQL> explain select week, store_name, prod_name,
> sum(sales.dollars) as sales,
> sum(sales_forecast.forecast_dollars) as forecast
> from period natural join sales natural join product natural join
> store natural join sales_forecast
> where year = 1998 and prod_name like ’Aroma%’
> group by week, store_name, prod_name
> having sales < forecast
> order by week, store_name, prod_name;
EXPLANATION
[
- EXECUTE (ID: 0) 6 Table locks (table, type): (PERIOD,
Read_Only), (PRODUCT, Read_Only), (STORE, Read_Only),
(SALES_FORECAST, Read_Only), (SALES, Read_Only), (PROMOTION,
Read_Only)

--- MERGE SORT (ID: 1) Distinct: FALSE
----- CHOOSE PLAN (ID: 2) Num prelims: 2; Num choices: 1; Type:
StarJoin;

Prelim: 1; Choose Plan [id : 2] {
BIT VECTOR SORT (ID: 3)
-- TABLE SCAN (ID: 4) Table: PERIOD, Predicate: (PERIOD.YEAR)
= (1998) }

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Sample STARjoin Plans - 4
§ Fact-to-Fact STARjoin
Prelim: 2; Choose Plan [id : 2] {
BIT VECTOR SORT (ID: 5)
-- TABLE SCAN (ID: 6) Table: PRODUCT, Predicate:
((PRODUCT.PROD_NAME) =< ('Aromaÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ')) &&
((PRODUCT.PROD_NAME) >= ('Aroma')) }

Choice: 1; Choose Plan [id : 2] {
HASH AVL AGGR (ID: 7) Log Advisor Info: FALSE, Grouping:
TRUE, Distinct: FALSE;
-- EXCHANGE (ID: 8) Exchange type: Functional Join
---- HASH AVL AGGR (ID: 9) Log Advisor Info: FALSE, Grouping:
TRUE, Distinct: FALSE;
------ FUNCTIONAL JOIN (ID: 10) 1 tables: PERIOD
-------- FUNCTIONAL JOIN (ID: 11) 1 tables: PRODUCT
---------- FUNCTIONAL JOIN (ID: 12) 1 tables: STORE
------------ FUNCTIONAL JOIN (ID: 13) 1 tables:
SALES_FORECAST
-------------- FUNCTIONAL JOIN (ID: 14) 1 tables: SALES
---------------- EXCHANGE (ID: 15) Exchange type: STARjoin
------------------ STARJOIN (ID: 16) Join type: InnerJoin,
Num facts: 2, Num potential dimensions: 4, Fact Table: SALES,
Potential Indexes: SALES_STAR_IDX, SALES_PROMO_STAR_IDX; Fact
Table: SALES_FORECAST, Potential Indexes: SALES_FORECAST_STAR_IDX;
Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION }]

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

More Tuning - Vista Aggregates

§ Materialize aggregates on precomputed views

§ Excellent for significantly speeding up on aggregation queries

§ Transparently rewrite queries to utilize pre-computed views
§ Step through all precomputed views for best aggregates to

rewrite against
§ Rewrite against detail fact table with PK/FK relationships
§ Looks for functional dependencies if hierarchies are defined

Example: create hierarchy qtr_year
(from period(qtr) to period(year));

§ Single fact table only

§ Use the vista advisor for suggestions on candidate
precomputed views to create

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

More Tuning -
Vista and Automated Maintenance

§ Requires more processing to maintain the aggregates up-to-
date with any updates/deletes to the detail table

§ Introduced automated aggregate maintenance in 6.1
§ Incremental or complete rebuild aggregates depending on

amount of updates/deletes

§ Can be done automatically with loads (see TMU Tuning)

§ Strongly recommend adding count(*) to the aggregate table to
facilitate incremental maintenance

§ Continually improving vista rewrite capability and
maintenance
§ Extend incremental maintenance on nullable columns in 6.3

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

6.3 Enhancements to Improve
Query Performance

§ Memory-mapping of dimension index/tables

§ Dynamic SmartScan optimization

§ Locally segmented TARGETjoin

§ TARGETjoin performance improvements

§ Optimizer hints to specify STARindex for joins

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Memory-mapped I/O Overview

Process P2: uses read() callsProcess P1: does mmaping

Virtual memory
system

The page is accessed
directly from VM

Copy block from disk
into VM

Buffer
Cache

Copy block from disk
into buffer cache

Copy page from buffer
cache into process local
memory

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Memory-mapping in Red Brick Server
§ Server in 6.3 performs memory-mapping of dimension tables and

indexes for selected operators
§ Applies to StarJoin/TargetJoin/TableScan plans that contain Btree-1-1-

Match or FunctionalJoin operators

§ Improves cache locality especially for large dimensions

§ Potential to significantly reduce number of read() system calls – thus
reduced cpu and I/O overhead

§ Maintains a single shared read-only copy of dimension data for
concurrent queries

§ Makes intelligent decisions about mmap resource allocation among
operators

§ Prioritizes among tables and indexes of different sizes

§ Provides good speedup (from 5 to 150% seen in certain queries)

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

MMAP External Interface
§ SET QUERY MMAP {ON | OFF} [Default = ON]

§ Can be set per-session or across all sessions using a config file option

§ SET QUERY MMAP LIMIT value {K|M|G} [Default = 5MB]

§ Similar to Query Memory Limit …but not limited to 2GB

§ From 8KB up to ULONG_MAX (several thousand Terabytes on 64
bit platforms)

§ Example messages:
§ ** INFORMATION ** (9151) CHOOSE PLAN (ID: 1) Index DIM01_PK_IDX of table DIM01 is

100.00 percent memory-mapped.
§ ** INFORMATION ** (9153) CHOOSE PLAN (ID: 1) Table DIM01 is 45.00 percent memory-

mapped.
§ Statistics:

§ MMAP_READS and CUM_MMAP_READS columns in the
DST_PERFORMANCE_OPSTATS table

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

MMAP Memory
§ Mmap memory serves as a shared cache of dimension data among

multiple concurrent queries
§ However, different queries can set different mmap memory limit

§ In addition to the Red Brick block cache…
§ …however, reads to mmapped data go directly to the mmap space, not

redirected from the block cache

§ User may see fewer block cache hits but at the same time higher mmap
space hits

§ Mmap memory and Query memory compete for the same physical
memory
§ Important to consider this when increasing the mmap memory

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Operators Eligible for MMAPing

Execute

ChoosePlan

TableScanTargetJoinStarJoin

Btree-1-1-Match

Functional-Join

Prelim Plan
operators

Eligible operators

Actual mmapping
performed by
ChoosePlan

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Criteria for MMAPing

§ Only StarJoin type ChoosePlan operator performs mmapping of tables and
indexes

§ Multiple ChoosePlan operators in a query plan will share the mmap
memory resources

§ Resource allocation gives higher preference to ChoosePlans that are
higher in the query plan hierarchy

§ Only B11Ms and FJs in Choice plans are eligible

§ B11M must be to a dimension Primary-key index

§ FJ must be to a dimension table, not fact

§ Leading dimension table of star-index is not mmapped

§ Mmapping is not performed if fewer than 1000 rows are selected from the
fact table

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

MMAP Priority Among Tables and Indexes

§ Priority based on Object type (table/index) and Size
§ Index given higher priority compared to table

§ Larger objects given higher priority

§ Example:

Index 1 Index 2 Table 1 Table 2

Mmap
space per

query
Decreasing
priority

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

Example Query and its (Partial) Explain

SELECT city_name, customer_name,
sum(num_orders)

FROM sales s, city c, customer cu
WHERE s.city_id = c.city_id
AND s.customer_id = cu.customer_id
AND city_name LIKE ‘Los%’

AND customer_name LIKE ‘Joe%’
GROUP BY city_name,

customer_name;

of rows: Sales: 5 million, City: 230,
Customer: 1 million
Query memory limit: 50MB,
Parallelism: 3

- EXECUTE (ID: 0)

--- CHOOSE PLAN (ID: 1) Num prelims: 1; Num choices: 2; Type: StarJoin;

Prelim: 1; Choose Plan [id : 1] {

BIT VECTOR SORT (ID: 2)

-- TABLE SCAN (ID: 3) Table: CY (CITY), Predicate: ((CY.CITY_NAME) =<
('Hÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ')) && ((CY.CITY_NAME) >= ('H'))

}

Choice: 1; Choose Plan [id : 1] {

HASH AVL AGGR (ID: 4);

-- EXCHANGE (ID: 5) Exchange type: Functional Join

---- HASH AVL AGGR (ID: 6)

------ FUNCTIONAL JOIN (ID: 7) 1 tables: CU (CUSTOMER)

-------- BTREE 1-1 MATCH (ID: 8) Join type: InnerJoin; Index(s): [Table: CUSTOMER,
Index: CUSTOMER_PK_IDX]

---------- FUNCTIONAL JOIN (ID: 9) 1 tables: CY (CITY)

------------ FUNCTIONAL JOIN (ID: 10) 1 tables: S (SALES)

-------------- EXCHANGE (ID: 11) Exchange type: STARjoin

---------------- STARJOIN (ID: 12) Join type: InnerJoin, Num facts: 1, Num potential
dimensions: 4, Fact Table: S (SALES), Potential Indexes: SALES_STAR1 ; Dimension Table(s):
CY (CITY), PROD, MFR, PERIOD

Mmap eligible

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

MMAP Performance

Query performance with mmapping On/Off

0

20

40

60

80

100

120

0 50 100 150 200 250

Query memory + mmap memory (MB)

E
la

ps
ed

 t
im

e
(s

ec
o

n
d

s)

Mmap OFF

Mmap ON

QML fixed at 40MB, MMAP = 10MB to 240MB

§ 10MB – 200MB of mmap memory gave 20% - 100% performance
improvement

IBM Software Group | DB2 Information Management Software

 IBM Corporation 2003 IBM Data Management Technical Conference

MMAP Performance

Hit rate relative to amount of data mmapped
(Customer pk-index 100% mmapped)

0

10

20

30

40

50

60

70

80

90

50 60 70 80 100 140 190 240

Query memory + mmap memory (MB)

%
 d

at
a

m
m

ap
pe

d

0

10

20

30

40

50

60

70

80

90

H
it

 r
at

e
(%

)

% Customer table
mmapped
Cache + mmap space
hit rate

