Improving IBM Red Brick Warehouse

Query Performance

Aman Sinha, Richard Taylor, Mandar Pimpale, David Wilhite, Cindy Fung

European Red Brick Users’ Group Conference 2003

Milano, Italy September 9 — September 10, 2003

O IBM Corporation 2003

IbVI SOottware Group | Dbz Intformation ivianagement sortware

Talk Outline
» Red Brick Philosophy

» Basic Query Tuning Principles
= More Tuning - Vista

= 6.3 Enhancements to Improve Query Performance:
= Memory-mapping of dimension index/tables

= Dynamic SmartScan optimization

» Locally segmented TARGETjoin

» TARGET]join performance improvements

= Optimizer hints to specify STARiIndex for joins

= Conclusions

IbVI SOottware Group | Dbz Intformation ivianagement sortware

Red Brick Philosophy

Effective performance AND simple to use

Apply intelligence on optimization internally
= Minimize user intervention
= A good example is Parallelism on Demand

= A few simple guidelines to determine when and how much
parallelism

Conscientiously design very few tuning knobs
= Designs focus on reducing complexity externally

= Conduct studies to determine best default settings
= Not necessary for customers to continuously tune

Our goal is to provide the best performance with low cost of
ownership

= Performance enhancements adhere to this philosophy

| IBIVI Soltware Group | DbZ Information ivianagement sortware S ===5

Basic Query Tuning Principles

Red Brick STARjoins are the fastest

The most effective performance tuning is a good STAR schema
= Will yield 80 — 99% performance gain
= All other tuning efforts are relatively small refinements

Mix of indexes (STARs, TARGETS, Btree’s) are key to benefiting
from STARjoin plans

» Leading dimension constraints STARiIndex will perform best

= Consider tradeoff with TARGET indexes to perform TARGETjoins when
you can'’t create too many STARindexes

Load fact table in STARIndex order
= Speeds up loads
= Speeds up row fetches to the fact table

Partition data/indexes effectively into PSUs and segments to
maximize on parallelism speedup

= See Query Performance Monitor case study

J B s]
O IBM Cor o 2‘003 bt SN IBM Data Management Technical Conference

| 'BM Software Lroup | Dbe Information Management sortware S ===5

Basic Query Tuning Principles - 2

= Minimize spilling
» |ncrease query memory limit, particularly for hashjoins
= Same for optimized index builds, increase index tempspace
= Use “set stats full;”, spilling reported in 1K values

= User beware, not fully supported yet

= Use several disks, or multi-disks logical volumes/disk arrays, for
tempspace directories to minimize disk contention

= Same for versioning logs — put on a disk array or logical volume

= Do not over commit on query parallelism
= Join tasks per query should be equal or less than CPUs in system

» Fetch tasks could be 1-2x join tasks, more if very slow I/O subsystem
* Do not be stingy with memory

= 2-4 GB memory per CPU, more even better

= Allows for more I/O caching in the OS file system cache

= Allows for MMAPIng for queries and loads

y 7 P m:;y. :
O IBM Cor o 2‘003 it SR IBM Data Management Technical Conference

ST

e AN

| IbIVI Software Group | vbZ Information vianagement sortware

Basic Query Tuning Principles - 3

» Look at query execution statistics with “set stats info;”
= Reports plan choice and index(es) selected, degrees of parallelism
» Reports CPU and time (elapsed) of query
= |f elapsed time significantly greater than CPU time
= Query is waiting for 1/0O
= May require disk tuning or increase memory to cache data
= |f CPU time is too high
= |nvestigate query plan improvement or create better index(es)
= |f there is parallelism, (CPU/time) should be greater than 1 to benefit
= Linear speedup is ratio equals number of join tasks

= Optimize I/O performance

» Separate indexes and data onto different disks, if not on a large striped
volume

= Configure enough memory to MMAP dimension indexes and tables
= Minimum of 6-10 disks per CPU

IbVI SOottware Group | Dbz Intformation ivianagement sortware S ===5

Sample STARjoin Plans

» Single Fact STARjoin

RISQL> explain select sales.promokey, dollars
> from promotion, sales

> where sales.promokey = promotion.promokey
> and promotion.promo_type = 400;

EXPLANATION

[

- EXECUTE (ID: 0) 5 Table locks (table, type): (PROMOTION,
Read_Only), (SALES, Read_Only), (PERIOD, Read_Only), (PRODUCT,
Read_Only), (STORE, Read_Only)

--- CHOOSE PLAN (ID: 1) Num prelims: 1; Num choices: 3; Type:
StarJoin;

Prelim: 1; Choose Plan [id : 1] {

BIT VECTOR SORT (ID: 2)

-- TABLE SCAN (ID: 3) Table: PROMOTION, Predicate:
(PROMOTION.PROMO_TYPE) = (400) }

| IbVI SOottware Group | Dbz Intformation ivianagement sortware

Sample STARjoin Plans - 2

» Single Fact STARjoin

Choice: 1; Choose Plan [id : 1] {

EXCHANGE (ID: 4) Exchange type: Functional Join

-- FUNCTIONAL JOIN (ID: 5) 1 tables: SALES

---- EXCHANGE (ID: 6) Exchange type: STARjoin

------ STARJOIN (ID: 7) Join type: InnerJoin, Num facts: 1,

Num potential dimensions: 4, Fact Table: SALES, Potential Indexes:
SALES_STAR_IDX, SALES_PROMO_STAR_IDX;

Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION }

Choice: 2; Choose Plan [id : 1] {

EXCHANGE (ID: 8) Exchange type: Table Scan

-- FUNCTIONAL JOIN (ID: 9) 1 tables: PROMOTION

---- BTREE 1-1 MATCH (ID: 10) Join type: InnerJoin; Index(s):
[Table: PROMOTION, Index: PROMOTION_PK_IDX]

------ TABLE SCAN (ID: 11) Table: SALES, Predicate: <none> }

Choice: 3; Choose Plan [id : 1] {

EXCHANGE (ID: 12) Exchange type: Functional Join

-- FUNCTIONAL JOIN (ID: 13) 1 tables: SALES

---- EXCHANGE (ID: 14) Exchange type: TARGETjoin

------ TARGET JOIN (ID: 15) Table: SALES, Predicate: <none> ;
Num indexes: 1 Index(s): Index: PROMOKEY_TGTJOIN_IDX
-------- FUNCTIONAL JOIN (ID: 16) 1 tables: PROMOTION

---------- VIRTAB SCAN (ID: 17) }]

| 'BM Software Lroup | Dbe Information Management sortware EE==S%

Sample STARjoin Plans - 3

» Fact-to-Fact STARjoin

RISQL> explain select week, store_name, prod_name,

> sum(sales.dollars) as sales,

> sum(sales_forecast.forecast_dollars) as forecast

> from period natural join sales natural join product natural join
> store natural join sales_forecast

> where year = 1998 and prod_name like ’Aroma%’

> group by week, store_name, prod_name

> having sales < forecast

> order by week, store_name, prod_name;

EXPLANATION

[

- EXECUTE (ID: 0) 6 Table locks (table, type): (PERIOD,
Read_Only), (PRODUCT, Read_Only), (STORE, Read_Only),
(SALES_FORECAST, Read_Only), (SALES, Read_Only), (PROMOTION,
Read_Only)

--- MERGE SORT (ID: 1) Distinct: FALSE
----- CHOOSE PLAN (ID: 2) Num prelims: 2; Num choices: 1; Type:
StarJoin;

Prelim: 1; Choose Plan [id : 2] {

BIT VECTOR SORT (ID: 3)

-- TABLE SCAN (ID: 4) Table: PERIOD, Predicate: (PERIOD.YEAR)
=(1998) }

| 'BM Software Lroup | Dbe Information Management sortware = ===%

Sample STARjoin Plans - 4

» Fact-to-Fact STARjoin

Prelim: 2; Choose Plan [id : 2] {
BIT VECTOR SORT (ID: 5)
-- TABLE SCAN (ID: 6) Table: PRODUCT, Predicate:

((PRODUCT.PROD_NAME) =< (‘Aromayyyyyyyyyyyyyyyyyyyyyyyyy)) &&
((PRODUCT.PROD_NAME) >= (‘Aroma’)) }

Choice: 1; Choose Plan [id : 2] {

HASH AVL AGGR (ID: 7) Log Advisor Info: FALSE, Grouping:

TRUE, Distinct: FALSE;

-- EXCHANGE (ID: 8) Exchange type: Functional Join

---- HASH AVL AGGR (ID: 9) Log Advisor Info: FALSE, Grouping:

TRUE, Distinct: FALSE;

------ FUNCTIONAL JOIN (ID: 10) 1 tables: PERIOD

-------- FUNCTIONAL JOIN (ID: 11) 1 tables: PRODUCT

---------- FUNCTIONAL JOIN (ID: 12) 1 tables: STORE

------------ FUNCTIONAL JOIN (ID: 13) 1 tables:

SALES_FORECAST

-------------- FUNCTIONAL JOIN (ID: 14) 1 tables: SALES

---------------- EXCHANGE (ID: 15) Exchange type: STARjoin

------------------ STARJOIN (ID: 16) Join type: InnerJoin,

Num facts: 2, Num potential dimensions: 4, Fact Table: SALES,

Potential Indexes: SALES_STAR_IDX, SALES_PROMO_STAR_IDX; Fact
Table: SALES_FORECAST, Potential Indexes: SALES_FORECAST_STAR_IDX;
Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION }]

| IBIVI Soltware Group | DbZ Information ivianagement sortware

More Tuning - Vista Aggregates
Materialize aggregates on precomputed views
Excellent for significantly speeding up on aggregation queries

Transparently rewrite queries to utilize pre-computed views

= Step through all precomputed views for best aggregates to
rewrite against
» Rewrite against detail fact table with PK/FK relationships

= Looks for functional dependencies if hierarchies are defined

Example: create hierarchy gtr_year
(from period(qtr) to period(year));

» Single fact table only

Use the vista advisor for suggestions on candidate
precomputed views to create

3 yi e :
O IBM Cor 0 2‘003 it ol IBM Data Management Technical Conference

| 'BM Software Lroup | Dbe Information Management sortware S ===5

More Tuning -
Vista and Automated Maintenance

Requires more processing to maintain the aggregates up-to-
date with any updates/deletes to the detail table

Introduced automated aggregate maintenance in 6.1

» Incremental or complete rebuild aggregates depending on
amount of updates/deletes

» Can be done automatically with loads (see TMU Tuning)

= Strongly recommend adding count(*) to the aggregate table to
facilitate incremental maintenance

Continually improving vista rewrite capability and

maintenance
= Extend incremental maintenance on nullable columns in 6.3

O IBM Cor 0 2‘003 it ol IBM Data Management Technical Conference

| 'BM Software Lroup | Dbe Information Management sortware = ===

6.3 Enhancements to Improve
Query Performance

Memory-mapping of dimension index/tables
Dynamic SmartScan optimization

Locally segmented TARGET]oin
TARGET]join performance improvements

Optimizer hints to specify STARiIndex for joins

| 'BM Software Lroup | Dbe Information Management sortware S ===5

Memory-mapped I/O Overview

Process P1: does mmaping Process P2: usesread() calls

Copy page from buffer

The pageis accessed cacheinto process local
directly from VM memory
Virtual memory Buffer
system Cache
X el
Copy block from disk Copy block from disk

into VM into buffer cache

| IbIVI Software Group | vbZ Information vianagement sortware

Memory-mapping in Red Brick Server

= Server in 6.3 performs memory-mapping of dimension tables and
iIndexes for selected operators

= Applies to StarJoin/TargetJoin/TableScan plans that contain Btree-1-1-
Match or FunctionalJoin operators

Improves cache locality especially for large dimensions

= Potential to significantly reduce number of read() system calls — thus
reduced cpu and I/O overhead

= Maintains a single shared read-only copy of dimension data for
concurrent queries

= Makes intelligent decisions about mmap resource allocation among
operators

= Prioritizes among tables and indexes of different sizes

= Provides good speedup (from 5 to 150% seen in certain queries)

IbVI SOottware Group | Dbz Intformation ivianagement sortware

MMAP External Interface

SET QUERY MMAP {ON | OFF} [Default = ON]
= Can be set per-session or across all sessions using a config file option

SET QUERY MMAP LIMIT value {K|M|G} [Default = 5MB]
= Similar to Query Memory Limit ...but not limited to 2GB

= From 8KB up to ULONG_MAX (several thousand Terabytes on 64
bit platforms)

Example messages:
= **INFORMATION ** (9151) CHOOSE PLAN (ID: 1) Index DIM01_PK_IDX of table DIMO1 is
100.00 percent memory-mapped.
= **INFORMATION ** (9153) CHOOSE PLAN (ID: 1) Table DIMO1 is 45.00 percent memory-
mapped.

Statistics:

= MMAP_READS and CUM_MMAP_READS columns in the
DST PERFORMANCE_OPSTATS table

IbVI SOottware Group | Dbz Intformation ivianagement sortware

MMAP Memory

» Mmap memory serves as a shared cache of dimension data among

multiple concurrent queries
= However, different queries can set different mmap memory limit

» |n addition to the Red Brick block cache...
= ...however, reads to mmapped data go directly to the mmap space, not
redirected from the block cache

= User may see fewer block cache hits but at the same time higher mmap
space hits

» Mmap memory and Query memory compete for the same physical
memory
= |mportant to consider this when increasing the mmap memory

| 'BM Software Lroup | Dbe Information Management sortware = ===%

Operators Eligible for MMAPINg

Execute

Actual mmapping

ChoosePlan | @@= performed by

\ ChoosePlan
LT TN T ~<_
Prelim Plan ’

\
\

<@ Eligible operators

\
\ 1
\ ’
\ ,
N 7’
\\\\ —//

StarJoin TargetJoin TableScan

IbVI SOottware Group | Dbz Intformation ivianagement sortware

Criteria for MMAPINg

Only StarJoin type ChoosePlan operator performs mmapping of tables and
indexes

. Multiple ChoosePlan operators in a query plan will share the mmap
memory resources

. Resource allocation gives higher preference to ChoosePlans that are
higher in the query plan hierarchy

Only B11Ms and FJs in Choice plans are eligible
B11M must be to a dimension Primary-key index
FJ must be to a dimension table, not fact

Leading dimension table of star-index is not mmapped

Mmapping is not performed if fewer than 1000 rows are selected from the
fact table

| 'BM Software Lroup | Dbe Information Management sortware = ===%

MMAP Priority Among Tables and Indexes

» Priority based on Object type (table/index) and Size
» |ndex given higher priority compared to table

= Larger objects given higher priority

= Example:

Mmap

Index 1 Index 2 Table 1 Table 2 Space per Decreasing
priority

query

| IbVI SOottware Group | Dbz Intformation ivianagement sortware

Example Query and its (Partial) Explain

SELECT city_name, customer_name,
sum(num_orders)

FROM sales s, city ¢, customer cu

WHERE s.city_id = c.city_id

AND s.customer_id = cu.customer_id

AND city _name LIKE ‘Los%’

AND customer_name LIKE ‘Joe%’

GROUP BY city_name,
customer_name;

of rows: Sales: 5 million, City: 230,
Customer: 1 million

Query memory limit: 50MB,
Parallelism: 3

Mmap eligible

- EXECUTE (ID: 0)

--- CHOOSE PLAN (ID: 1) Num prelims: 1; Num choices: 2; Type: StarJoin;
Prelim: 1; Choose Plan [id : 1]{
BIT VECTOR SORT (ID: 2)

-- TABLE SCAN (ID: 3) Table: CY (CITY), Predicate: ((CY.CITY_NAME) =<
(HYYYYYYyyyyyyyyyyyyy)) && ((CY.CITY_NAME) >= (H'))

}

Choice: 1; Choose Plan [id : 1] {

HASH AVL AGGR (ID: 4);

-- EXCHANGE (ID: 5) Exchange type: Functional Join

--—- HASH AVL AGGR (ID: 6)

------ FUNCTIONAL JOIN (ID: 7) 1 tables: CU (CUSTOMER)

———————— BTREE 1-1 MATCH (ID: 8) Join type: InnerJoin; Index(s): [Table: CUSTOMER,
Index: CUSTOMER_PK_IDX]

—————————— FUNCTIONAL JOIN (ID: 9) 1 tables: CY (CITY)
———————————— FUNCTIONAL JOIN (ID: 10) 1 tables: S (SALES)
—————————————— EXCHANGE (ID: 11) Exchange type: STARjoin

———————————————— STARJOIN (ID: 12) Join type: InnerJoin, Num facts: 1, Num potential
dimensions: 4, Fact Table: S (SALES), Potential Indexes: SALES _STAR1 ; Dimension Table(s):
CY (CITY), PROD, MFR, PERIOD

IbM Sottware Group | Dbz Information ivianagement software

MMAP Performance

Query performance with mmapping On/Off

120

100

80

60

40

Elapsed time (seconds)

20 { ====Nmap OFF
=== Mmap ON

0 50 100 150 200 250

Query memory + mmap memory (MB)

10MB — 200MB of mmap memory gave 20% - 100% performance
improvement

IbVI SOottware Group | Dbz Intformation ivianagement sortware EE==S%

MMAP Performance

% data mmapped

Hit rate relative to amount of data mmapped
(Customer pk-index 100% mmapped)
90 + - 90
80 + - 80
70 + - 70
60 + - 60 —~
L
50 + - 50
a0 L mmm % Customer table | 40 E
mmapped =
30 + —e—Cache + mmap space - 30 T
20 4 hit rate | 20
0 ~om B : : : : -0
50 60 70 80 100 140 190 240
Query memory + mmap memory (MB)

